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1. MOTIVATION

Two main sources have led to the development of several notions ofF1-geometry in the
recent five years. We will concentrate on one of these, which originated as remark in a
paper by Jacques Tits ([10]). For a wide class of schemesX (including affine spaceAn,
projective spacePn, the GrassmannianGr(k, n), split reductive groupsG), the function

N(q) = #X(Fq)

is described by a polynomial inq with integer coefficients, wheneverq is a prime power.
Taking the valueN(1) sometimes gives interesting outcomes, but has a0 of orderr in
other cases. A more interesting number is the lowest non-vanishing coefficient of the
development ofN(q) aroundq − 1, i.e. the number

lim
q→1

N(q)
(q − 1)r

,

which Tits took to be the number#X(F1) of “F1-points” ofX. The task at hand is to
extend the definition of the above mentioned schemesX to schemes that are “defined over
F1” such that their set ofF1-points is a set of cardinality#X(F1). We describe some
cases, and suggest an interpretation of the set ofF1-points:

• #Pn−1(F1) = n = #Mn with Mn := {1, . . . , n}.
• # Gr(k, n)(F1) =

(
n
k

)
= #Mk,n withMk,n = {subsets ofMn with k elements}.

• If G is a split reductive group of rankr, T ' Gr
m ⊂ G is a maximal torus,

N its nomalizer andW = N(Z)/T (Z), then the Bruhat decompositionG(Fq) =∐
w∈W BwB(Fq) (whereB is a Borel subgroup containingT ) implies thatN(q) =∑
w∈W (q − 1)rqd

w for certaindw ≥ 0. This means that#G(F1) = #W .

In particular, it is natural to ask whether the group lawm : G×G→ G of a split reductive
group may be defined as a “morphism overF1”. If so, one can define “group actions over
F1”. The limit asq → 1 of the action

GL(n,Fq)×Gr(k, n)(Fq) −→ Gr(k, n)(Fq)

induced by the action onPn−1(Fq) should be the action

Sn ×Mk,n −→Mk,n

induced by the action onMn = {1, . . . , n}.
The other, more lofty motivation forF1-geometry stems from the search for a proof of

the Riemann hypothesis. In the early 90s, Deninger gave criteria for a category of motives
that would provide a geometric framework for translating Weil’s proof of the Riemann
hypothesis for global fields of positive characteristic to number fields. In particular, the
Riemann zeta functionζ(s) should have a cohomological interpretation, where anH0, an
H1 and anH2-term are involved. Manin proposed in [7] to interpret theH0-term as the
zeta function of the “absolute point”Spec F1 and theH2-term as the zeta function of the
“absolute Tate motive” or the “affine line overF1”.
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2. OVERVIEW OVER RECENT APPROACHES

We give a rough description of the several approaches towardsF1-geometry, some of them
looking for weaker structures than rings, e.g. monoids, others looking for a category of
schemes with certain additional structures. In the following, amonoidalways means a
abelian mutliplicative semi-group with1. A variety is a schemeX that defines, via base
extension, a varietyXk over any fieldk.

2.1. Souĺe, 2004 ([9]). This is the first paper that suggests a candidate of a category of
varieties overF1. Souĺe consideres schemes together with a complex algebra, a func-
tor on finite rings that are flat overZ and certain natural transformations and a universal
property that connects the scheme, the functor and the algebra. Soulé could prove that
smooth toric varieties provide natural examples ofF1-varieties. In [6] the list of examples
was broadened to contain models of all toric varieties overF1, as well as split reductive
groups. However, it seems unlikely that Grassmannians that are not projective spaces can
be defined in this framework.

2.2. Connes-Consani, 2008 ([1]). The approach of Soulé was modified by Connes and
Consani in the following way. They consider the category of scshemes together with a
functor on finite abelian groups, a complex variety, certain natural transformations and a
universal property analogous to Soulé’s idea. This category behaves only slightly different
in some subtle details, but the class of established examples is the same (cf. [6]).

2.3. Deitmar, 2005 ([3]). A completely different approach was taken by Deitmar who
uses the theory of prime ideals of monoids to define spectra of monoids. AF1-scheme is a
topological space together with a sheaf of monoids that is locally isomorphic the spectrum
of a ring. This theory has the advantage of having a very geometric flavour and one can
mimic algebraic geometry to a large extent. However, Deitmar has shown himself in a
subsequent paper that theF1-schemes whose base extension toZ are varieties are nothing
more than toric varieties.

2.4. Toën-Vaquié, 2008 ([11]). Deitmar’s approach is complemented by the work of Toën
and Vaquíe, which proposes locally representable functors on monoids asF1-schemes.
Marty shows in [8] that the NoetherianF1-schemes in Deitmar’s sense correspond to the
Noetherian objects in Töen-Vaquíe’s sense. We raise the question: is the Noetherian con-
dition necessary?

2.5. Borger, in progress. The category investigated by Borger are schemesX together
with a family of morphism{ψp : X → X}p prime, where theψp’s are lifts of the Frobenius
morphismsFrobp : X ⊗ Fp → X ⊗ Fp and allψp’s commute with each other.

There are further approaches by Durov ([4], 2007) and Haran ([5], 2007), which we do
not describe here. In the following section we will examine more closely a new framework
for F1-geometry by Connes and Consani in spring 2009.

3. F1-SCHEMESÀ LA CONNES-CONSANI AND TORIFIED VARIETIES

The new notion of anF1-scheme due to Connes and Consani ([2]) combines the earlier
approaches of Soulé and of themselves with Deitmar’s theory of spectra of monoids and
Toën-Vaquíe’s functorial viewpoint. First of all, Connes and Consani consider monoids
with 0 and remark that the spaces that are locally isomorphic to spectra of monoids with
0, calledM0-schemes, are the same as locally representable functors of monoids with0.
(Note that they do not make any Noetherian hypothesis). There is a natural notion of
morphism in this setting. The base extension is locally given by taking the semi-group
ring, i.e. ifA is a monoid with zero0A andX = SpecA is its spectrum, then

XZ := X ⊗F1 Z := Spec
(
Z[A]/(1 · 0A − 0Z[A])

)
.
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An F1-scheme is a triple(X̃,X, eX), whereX̃ is anM0-scheme,X is a scheme and
eX : X̃Z → X is a morphism such thateX(k) : X̃Z(k) ∼→ X(k) is a bijection for all fields
k.

Note that anM0-schemeX̃ defines theF1-scheme(X̃, X̃Z, idX̃Z
). We give first ex-

amples ofF1-schemes of this kind. The affine lineA1
F1

is the spectrum of the monoid
{T i}i∈N q {0} and, indeed, we haveA1

F1
⊗F1 Z ' A1. The multiplicative groupGm,F1

is the spectrum of the monoid{T i}i∈Z q {0}, which base extends toGm as desired.
Both examples can be extended to defineAn

F1
andGn

m,F1
by considering multiple variables

T1, . . . , Tn. More generally, allF1-schemes in the sense of Deitmar deliver examples of
M0 and thusF1-schemes in this new sense. In particular, toric varieties can be realized.

To obtain a richer class of examples, we recall the definition of a torified variety as given
in a joint work with Javier Ĺopez Pẽna ([6]). A torified varietyis a varietyX together with
morphismeX : T → X such thatT '

∐
i∈I Gdi

m, whereI is a finite index set anddi are
non-negative integers and such that for every fieldk, the morphismeX induces a bijection
T (k) ∼→ X(k). We calleX : T → X a torificationof X.

Note thatT is isomorphic to the base extensionX̃Z of theM0-schemeX̃ =
∐

i∈I Gdi

m,F1
.

Thus every torified varietyeX : T → X defines anF1-scheme(X̃,X, eX).
In [6], a variety of examples are given. Most important for our purpose are toric va-

rieties, Grassmannians and split reductive groups. IfX is a toric variety of dimensionn
with fan∆ = {conesτ ⊂ Rn}, i.e.X = colimτ∈∆ Spec Z[Aτ ], whereAτ = τ∨ ∩ Zn is
the intersection the dual coneτ∨ ⊂ Rn with the dual latticeZn ⊂ Rn. Then the natural
morphism

∐
τ∈∆ Spec Z[A×τ ] → X is a torification ofX.

The Schubert cell decomposition ofGr(k, n) is a morphism
∐

w∈Mk,n
Adw → Gr(k, n)

that induces a bijection ofk-points for all fieldsk. Since the affine spaces in this decom-
position can be further decomposed into tori, we obtain a torificationeX : T → Gr(k, n).
Note that the lowest-dimensional tori are0-dimensional and the number of0-dimensional
tori is exactly#Mk,n.

LetG be a split reductive group of rankr with maximal torusT ' Gr
m, normalizerN

and Weyl groupW = N(Z)/T (Z). LetB be a Borel subgroup containingT . The Bruhat
decomposition

∐
w∈W BwB → G, whereBwB ' Gr

m × Adw for somedw ≥ 0, yields
a torificationeG : T → G analogously to the case of the Grassmannian. This defines
a modelG = (G̃,G, eG) over F1. Note that in this case the lowest-dimensional tori are
r-dimensional and that the number ofr-dimensional tori is exactly#W .

Clearly, there is a close connection between torified varieties and theF1-schemes in the
sense of Connes and Consani with the idea that Tits had in mind. However, the natural
choice of morphism in this category is a morphism̃f : X̃ → Ỹ of M0-schemes together
with a morphismf : X → Y of schemes such that

X̃Z
f̃Z //

eX��

ỸZ
eX��

X
f // Y

commutes. Unfortunately, the only reductive groupsG whose group lawm : G×G→ G
extends to a morphismµ : G×G → G in this sense such that(G, µ) becomes a group object
in the category ofF1-schemes are algebraic groups of the formG ' Gr

m × (finite group).
In the following section we will show how to modify the notion of morphism to realize
Tits’ idea.

4. STRONG MORPHISMS

Let X = (X̃,X, eX) andY = (Ỹ , Y, eY ) beF1-schemes. Then we define therank of a
pointx in the underlying topological spacẽX asrkx := rkO×X,x, whereOX,x is the stalk
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(of monoids) atx andO×X,x denotes its group of invertible elements. We define therank of
X asrkX := minx∈X̃{rkx} and we let

X̃rk :=
∐

rk x=rk X̃

SpecO×X,x,

which is a sub-M0-scheme ofX̃. A strong morphismϕ : X → Y is a pairϕ = (f̃ , f),
wheref̃ : X̃rk → Ỹ rk is a morphism ofM0-schemes andf : X → Y is a morphism of
schemes such that

X̃rk
Z

f̃Z //

eX��

Ỹ rk
Z

eY��
X

f // Y
commutes.

This notion comes already close to achieving our goal. In the category ofF1-schemes
together with strong morphisms, the object(Spec{0, 1},Spec Z, idSpec Z) is the terminal
object, which we should define asSpec F1. We define

X (F1) := Homstrong(Spec F1,X ),

which equals the set of points of̃Xrk as every strong morphismSpec F1 → X is deter-
mined by the image of the unique point{0} of Spec{0, 1} in X̃rk . We see at once that
#X (F1) = #Mk,n if X is a model of the GrassmannianGr(k, n) asF1-scheme and that
#G(F1) = #W if G = (G̃,G, eG) is a model of a split reductive groupG with Weyl
groupW .

Furthermore, if the Weyl group can be lifted toN(Z) as group, i.e. if the short exact
sequence of groups

1 −→ T (Z) −→ N(Z) −→W −→ 1

splits, then from the commutativity of

G̃rk
Z × G̃rk

Z
m̃Z //

(eG,eG)��

G̃rk
Z
eG

��
G×G

m // G

we obtain a morphism̃m : G̃rk × G̃rk → G̃rk of M0-schemes such thatµ = (m̃,m) :
G × G → G is a strong morphism that makesG into a group object.

However,SL(n) provides an example where the Weyl group cannot be lifted. This leads
us, in the following section, to introduce a second kind of morphisms.

5. WEAK MORPHISMS

The morphismSpecO×X,x → ∗M0 to the terminal object∗M0 = Spec{0, 1} in the category
of M0-schemes induces a morphism

X̃rk =
∐

x∈X̃rk

SpecO×X,x −→ ∗X :=
∐

x∈X̃rk

∗M0 .

Given f̃ : X̃rk → Ỹ rk , there is a unique morphism∗X → ∗Y such that

X̃rk
f̃ //

��

Ỹ rk

��
∗X // ∗Y

commutes. LetXrk denote the image ofeX : X̃rk → X. A weak morphismϕ : X → Y is
a pairϕ = (f̃ , f), wheref̃ : X̃rk → Ỹ rk is a morphism ofM0-schemes andf : X → Y



GEOMETRY OVER THE FIELD WITH ONE ELEMENT 5

is a morphism of schemes such that

X̃rk
Z

f̃Z //

&&MMMMMM Ỹ rk
Z

&&MMMMMM

(∗X )Z // (∗Y)Z

Xrk
f //

77pppppp
Y rk

88pppppp

commutes.
The key observation is that a weak morphismϕ = (f̃ , f) : X → Y has a base extension

f : X → Y to Z, but also induces a morphism̃f∗ : X (F1) → Y(F1). With this in hand,
we yield the following results.

6. ALGEBRAIC GROUPS OVERF1

The idea of Tits’ paper is now realized in the following form.

Theorem 6.1. LetG be a split reductive group with group lawm : G × G → G and
Weyl groupW . LetG = (G̃,G, eG) be the model ofG as described before asF1-scheme.
Then there is morphism̃m : G̃× G̃→ G̃ ofM0-schemes such thatµ = (m̃,m) is a weak
morphism that makesG into a group object. In particular,G(F1) inherits the structure of
a group that is isomorphic toW .

We have already seen thatX (F1) = Mk,n whenX is a model ofGr(n, k) asF1-scheme.
Furthermore, we have the following.

Theorem 6.2. Let G be a model ofG = GL(n) as F1-scheme and letX be a model of
X = Gr(k, n) asF1-scheme. Then the group action

f : GL(n)×Gr(k, n) −→ Gr(k, n),

induced by the action onPn−1, can be extended to a strong morphismϕ : G × X → X
such that the group action

ϕ(F1) : Sn ×Mk,n −→ Mk,n,

of G(F1) = Sn onX (F1) = Mk,n is induced by the action onMn = {1, . . . , n}.
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