
LECTURES ON F1

OLIVER LORSCHEID

Abstract. This is a manuscript for four lectures held at IMPA in January 2014. The topics
of these lectures are as follows.

In Lecture 1, we will review the early motivations of F1-geometry, which are (a) Jacques Tits’
idea of Chevalley groups over F1 to explain combinatorial counterparts of incidence geometries
over finite fields, and (b) the ambitious programme to prove the Riemann hypothesis with help
of an interpretation of SpecZ as a curve over F1. We give an overview of the different approaches
towards F1-geometry until today, embedded into the historical development of ideas. Finally,
we explain how toric geometry led to the definition of monoidal schemes, which form the core
of F1-geometry.

In Lecture 2, we will introduce blueprints, which are objects that allow us to interpolate
between monoids and rings. Blue schemes are spaces that are locally isomorphic to the prime
spectrum of a blueprint. This class of objects contains usual schemes, monoidal schemes, F1-
models of algebraic groups, and many more interesting examples.

In Lecture 3, we will explain why the functor Hom(SpecF1,−) of F1-rational points cannot
satisfy the expectations on F1-geometry. However, we will show that so-called Tits morphisms
of blue schemes allow us to make heuristics on Euler characteristics and on Weyl groups of
Chevalley groups precise. Furthermore, this class of morphisms contains group laws of Chevalley
groups to F1.

In Lecture 4, we extend first results on Euler characteristics to a larger class of projective
varieties with the help of quiver Grassmannians. Namely, all quiver Grassmannians of unram-
ified tree modules admit an F1-model whose F1-rational points count the Euler characteristic.
We demonstrate this in the example of a del Pezzo surface of degree 6.
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Lecture 1: Motivation, history, and the role of toric geometry

1. Tits’ dream

The first mentioning of a “field of characteristic 1” can be found in Jacques Tits’ lecture
notes [Tit57]. Tits observed that incidence geometries over finite fields Fq have a combinatorial
counterpart, which could be interpreted as the limit q → 1. Tits wondered whether there would
be a geometry over a field of characteristic 1 that would explain these analogies. The present-day
name for this elusive field is F1, the field with one element.

To make Tits’ idea plausible, consider the following examples. The projective space Pn over
Fq has analogous properties to the set Pn = {[1 : 0 : . . . : 0], . . . , [0 : . . . : 0 : 1]} of coordinates
axes of An+1. Let NPn(q) = [n]q be the number of Fq-rational points of Pn where [n]q =

∑n
i=0 q

i

is the Gauß number. Its limit q → 1 is indeed

NPn(q) =
n∑
i=0

qi −→
q→1

n+ 1 = #Pn.

For a general scheme, we call the function NX(q) = #X(Fq) the counting function of X or , in
case it can be represented by a polynomial in q, the counting polynomial of X. A generalization
of the above example are Grassmannians Gr(k, n) over Fq of linear k-subspaces in Fnq . Their
combinatorial analogon is the set Mk,n of k-subspaces that are spanned by standard basis vectors.
Indeed, we have

NGr(k,n)(q) =

[
n
k

]
q

−→
q→1

(
n

k

)
= #Mk,n

where [ nk ]q = [n]!
[k]![n−k]! is the Gauß binom and [n]! =

∏n
i=0[i]q is the Gauß factorial.

We would like to think of Pn and Mk,n as the sets of F1-rational points of Pn and Gr(k, n), re-
spectively. Note that their respective cardinalities are equal to the Euler characteristics of Pn(C)
and Gr(k, n)(C), which indicates a link between F1-rational points and the Euler characteristic
of the space of C-rational points.

The limits for Pn and Gr(k, n) fit with the fact that the combinatorial counterpart of the
general linear group GLn is its Weyl group W , which corresponds to the group of permutation
matrices of GLn. While GLn(Fq) acts transitively on Gr(k, n)(Fq), the Weyl group W acts
transitively on Mk,n. Using the Bruhat decomposition

GLn(Fq) =
∐
w∈W

BnwB︸ ︷︷ ︸
'T×Adw

(Fq)

where B is the Borel subgroup of upper triangular matrices, nw is the permutation matrix
corresponding to w, T ' Gn

m is the diagonal torus and dw equals the number of positive roots
plus the length of w, we see that the counting polynomial

NGLn(q) = (q − 1)n ·
∑
w∈W

qdw

has limit 0 for q → 1 (which equals the Euler characteristic of GLm(C)). If we, however, resolve
the zero of NGLn(q) in q = 1, then we obtain the expected outcome

(q − 1)−n ·NGLn(q) =
∑
w∈W

qdw −→
q→1

#W.
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Note that these limits are compatible with the action of GLn(Fq) on Gr(k, n)(Fq) and W on
Mk,n in the sense that the inclusions W ⊂ GLn(Fq) and Mk,n ⊂ Gr(k, n)(Fq) commute with the
respective group actions.

This example extends to all split reductive group schemes G and their actions on homogeneous
spaces of the form G/P where P is a parabolic subgroup containing a maximal split torus T
of G. The work of Chevalley and others (Demazure, Grothendieck, e.a.) clarified the theory of
split reductive groups over fields of different characteristics by establishing split models over Z,
which are also called Chevalley group schemes. Such a model over Z inhabits the information for
all characteristics, and the functor Hom(SpecFq,−) associates with a Chevalley group scheme
G the group G(Fq) for any prime power q.

To make Tits’ idea precise, we are searching for a category of “schemes over F1” together with
a base extension functor − ⊗F1 Z to Grothendieck schemes and a functor of F1-rational points
such that we find models of Chevalley group schemes and homogeneous spaces over F1 with the
expected sets of F1-rational points. This can be summarized in the picture

Q F2 F3 · · ·

Sets Z
−⊗ZQ

@@@@@@@@

−⊗ZF2
~~~~~~~ −⊗ZF3

nnnnnnnnnnnnnnn

F1

F1-rational
points

DDDDDDDD −⊗F1Z

~~~~~~~

While Tits’ dream was slumbering for many decades, it was other thoughts that drew the
attention to F1 in the 80ies and 90ies. The single most-popular idea is arguably the programme
to prove the Riemann hypothesis by developing methods from algebraic geometry for F1-schemes
that allows us to interpret SpecZ as a curve over F1 and to apply Weil’s proof of the Riemann
hypothesis for curves over finite fields to solve the classical conjecture. This idea first entered
literature in Manin’s lecture notes [Man95].

Around the same time other ideas appeared like Smirnov’s programme to prove the ABC-
conjecture with help of a Hurwitz equality for the morphism SpecZ → P1

F1
(see [Smi92]) or

Soulé’s interpretation of the stable homotopy groups of spheres as the K-theory of F1 (see
[Sou04]). An outline of the historical development of ideas around F1 and the introduction of
F1-geometries can be found in Part 1 of [Lor13].

In the course of these lectures, we will concentrate on the original problem posted by Tits,
and say little about other aspects of F1-geometry.

2. A dozen ways to define F1

The first suggestion of what a variety over F1 should be was given by Soulé in [Sou04]. One
might speculate about the psychological impact of this first attempt to define F1-geometry:
soon after, a dozen further approaches towards F1 (and more) appeared. Without keeping the
chronological order, we mention them in the following.

Soulé’s definition underwent a number of variations by himself in [Sou11] and by Connes and
Consani in [CC11] and in [CC10]. The latter notion of an F1-scheme turns out to be in essence
the same as a torified scheme as introduced by López Peña and the author in [LPL11] in order
to produce examples for the F1-varieties considered in [Sou04] and [CC11].

Deitmar reinterprets in [Dei05] Kato’s generalization ([Kat94]) of a toric variety as an F1-
scheme. This approach is based on the notion of a prime ideal for a monoid, which yields a
topological space of a combinatorial flavour together with a structure sheaf in monoids. This
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category of F1-schemes is minimalistic in the sense that it can be embedded into any other
F1-theory. We will explain this approach in Section 3.

Toën and Vaquié generalize in [TV09] the functorial viewpoint on scheme theory to any
closed complete and cocomplete symmetric monoidal category C that replaces the category of
R-modules in the case of schemes over a ring R. They call the resulting objects schemes relative
to C. An F1-scheme is a scheme relative to the category of sets, together with the Cartesian
product. It turns out that this approach is equivalent to Deitmar’s.

Durov’s view on Arakelov theory in terms of monads in his comprehensive thesis [Dur07]
produces a notion of F1-schemes. Haran’s idea is to study the categories of coherent sheaves
instead of F1-schemes itself. His definition of a generalized scheme can be found in [Har07], and
a modification in [Har09].

Borger’s work on Λ-algebraic geometry yields a notion of an F1-scheme in [Bor09]. Lescot
develops in [Les11] a geometry associated with idempotent semirings, which he gives the inter-
pretation of an F1-geometry.

Berkovich describes a theory of congruence schemes for monoids (see [Ber11]), which can be
seen as an enrichment of Deitmar’s F1-geometry. Deitmar modifies this approach and applies it
to sesquiads, which is a common generalization of rings and monoids.

The author introduces in [Lor12a] the theory of blueprints and blue schemes, which we will
examine in more detail in the forthcoming lectures.

For more details about literature on F1-geometry, see Part 1 of [Lor13], which contains a
tentatively exhaustive list of (pre-)publications until the end of 2012.

3. Toric geometry and monoidal schemes

“Toric geometry is the very core of F1-geometry.”

In this section, we like to explain this statement in terms of monoidal schemes, which form
a category of F1-schemes that is intrinsically contained in all other approaches towards F1-
geometry, possibly modulo some technical assumption like being of finite type.

To start with, we will like to answer the question

“What is a toric variety?”

in a way that led to the generalization of a fan, considered by Kato in [Kat94], and that
was later called F1-scheme by Deitmar in [Dei05], or M0-scheme, monoid scheme or monoidal
scheme in other sources. We will start with some preliminary definitions and conventions for our
exhibition. Note that we include a zero element from the beginning of our considerations though
this was not done in [Kat94] and [Dei05], but only in later treatments of monoidal schemes.

A monoid will always be a multiplicatively written commutative associative semigroup A with
0 and 1, i.e. elements that satisfy 0 · a = 0 and 1 · a = a for all a ∈ A. A morphism of monoids
is a multiplicative map f : A1 → A2 that maps 0 to 0 and 1 to 1. This defines the categoryM0

of monoids (with zero). Note that this category is complete and cocomplete.
A multiplicative subset of A is a multiplicatively closed subset S of A that contains 1. We

define the localization of A at S as the monoid

S−1A = (S ×A) / ∼
where (s, a) ∼ (s′, a′) if and only if there is a t ∈ S such that ts′a = tsa′. As usual, we denote the

equivalence class of (s, a) by a
s . The multiplication is defined by a

s ·
a′

s′ = aa′

ss′ and 0
1 and 1

1 are the

zero and the one of S−1A, respectively. The localization S−1A comes together with a canonical
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monoid morphisms A → S−1A that sends a to a
1 . We say that a morphism f : A1 → A2 of

monoids is a localization if it is the canonical morphism of some localization of A1.
Given a ring R, we define the monoid ring of A over R as

R[A] =
( ⊕
a∈A

R.a
)
/ R.0A

where 0A denotes the zero in A, together with the multiplication that extends R-linearly the
multiplication of A. We also write A ⊗F1 R or AR for R[A], and consider − ⊗F1 R as a base
extension functor from monoids to R-algebras.

Exercise 3.1. Show that the ring homomorphism

S−1(R[A]) −→ R[S−1A]

that maps r.a
s to r.

(
a
s

)
is an isomorphism.

Let ∆ be a fan in Zn, i.e. a collection of (strictly convex and rational) cones τ, σ, . . . ∈ Rn
that contains all faces of cones such that every non-empty intersection τ ∩ σ is face of both τ
and σ. Let

τ∨ = {v ∈ Rn| < v,w >≥ 0 for all w ∈ τ}

be the dual cone of τ . Then τ∨ ∩ Zn is an additive semigroup, and we define the monoid Aτ
as {0} ∪ τ∨ ∩ Zn, written multiplicatively. The collection of monoids Aτ come with monoid
morphisms Aτ → Aσ whenever σ ⊂ τ . We define the dual fan ∆op as the diagram of all Aτ with
τ ∈ ∆ and monoid morphisms Aτ → Aσ for σ ⊂ τ .

Exercise 3.2. It is an interesting task to work out the conditions on diagrams D of monoids and
monoid morphisms that characterize whether D is of the form ∆op for a fan ∆. Some necessary
conditions are:

(i) The diagram D is commutative.
(ii) The commutative category generated by D contains cofibre products.
(iii) The diagram D contains a terminal object A0 such that A0−{0} is a free abelian group

of rank n.
(iv) All monoids Aτ in D are finitely generated and if am = 1 for m ≥ 1, then a = 1.
(v) All morphisms in D are localizations.

This list is certainly not sufficient yet for D to be a dual fan.

We define the toric variety X(∆) associated with ∆ as follows. Let UA = SpecR[A] for
A ∈ ∆op. Together with the morphisms UA → UA′ for A′ → A in ∆op, this forms a system U of
open immersions of R-schemes (by (v) in Exercise 3.2), which satisfies the cocycle condition for
gluing (by (i)–(iii) in Exercise 3.2). Thus we can define X(∆) as the colimit of U in the category
of R-schemes, which is the toric variety associated with ∆.

Observation 1. Let D be a system of finitely many monoids A and monoid morphisms and U
the associated system of affine R-schemes UA and morphisms of R-schemes. All we need to glue
the UA to an R- scheme X such that the UA define an open covering of X are the following two
conditions on D:

(i) All morphisms in D are localizations.
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(ii) The diagram D satisfies the cocycle condition: given a diagram of localizations of
monoids

A1

f112 //

f113
VVVVVVVVVV

**VVVVVVVVVV

A12
g12

**VVVVVVVVVVVVVVVVVVVV

A2
f212

44hhhhhhhhhhhhhhhhhhhh
f223

**VVVVVVVVVVVVVVVVVVVV A13
g13 // A′

A3
f323

//
f313

hhhhhhhhhh

44hhhhhhhhhh

A23

g23

44hhhhhhhhhhhhhhhhhhhh

with f112, f
1
13, f

2
12, f

2
23, f

3
13 and f323 in D, then two squares of the above diagram commute

only if the third square commutes as well, this is, if g12 ◦ f112 = g13 ◦ f113 and g12 ◦ f212 =
g23 ◦ f223, then g13 ◦ f313 = g23 ◦ f323.

Observation 2. We do not need the base ring R, but we can associate prime spectra to the
monoids A in D itself. To do so, we introduce the following notions.

An ideal of A is a subset I of A such that 0 ∈ I and such that IA ⊂ I. A prime ideal of A is
an ideal p of A such that its complement S = A− p is a multiplicative subset.

The spectrum of A is the set X = SpecA of all prime ideals p of A together with the Zariski
topology, which the open subsets of the form

Uf = { p ∈ SpecA | f /∈ p },
for f ∈ A as a basis, and together with a structure sheaf OX in M0 defined by

OX(Uf ) = A[f−1]

where A[f−1] = S−1A with S = {f i}i≥0.
We describe some properties of the spectrum, which are in complete analogy to the case of

spectra of rings. First of all note that there is indeed a (unique) sheafOX withOX(Uf ) = A[f−1].
This is much easier to see than in the case of rings since every monoid is local : the set m of
all non-invertible elements of A is its unique maximal ideal. Therefore every covering of Uf
must contain Uf itself. This means that the spectrum X = SpecA is a monoidal space, i.e. a
topological space together with a sheaf in M0, and its global sections OX(X) are canonically
isomorphic to A itself. Note that SpecA is compact.

Since M0 is cocomplete, we can define the stalk OX,p of OX in a point p ∈ X as the colimit
of OX(U) over all open subsets U of X that contain p. It turns out that OX,p ' Ap where
Ap = S−1A with S = A − p. Since the monoids Ap are local, SpecA is local monoidal space,
which is a monoidal space whose stalks are local monoids. A local morphism of local monoidal
spaces is a continuous map ϕ : X → Y together with a morphism of sheaves ϕ∗OY → OX on X
such that the induced morphisms between stalks map maximal ideals to maximal ideals.

We define a monoidal scheme as a local monoidal space that is covered by open subspaces
that are isomorphic to spectra of monoids. Note that if we have given a diagram D of monoids
that satisfies conditions (i) and (ii) of Observation 1, then the colimit of the spectra inside
the category of local monoidal spaces defines a compact monoidal scheme, and every compact
monoidal scheme is such a colimit1.

The base extension − ⊗F1 Z from monoidal schemes to Grothendieck schemes is defined as
follows. We set (SpecA) ⊗F1 Z = SpecZ[A]. Given a monoidal scheme X with an open affine
covering {Ui} with Ui = SpecAi, we glue the affine schemes Ui⊗F1Z along affine open subschemes

1This correspondence extends to a correspondence of possibly infinite diagrams D and possibly non-compact
monoidal schemes. See [Lor12c] for a precise treatment.
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V ⊗F1 Z for affine open monoidal subschemes V of the intersections Ui ∩ Uj . This process is
well-defined and independent of the chosen covering {Ui}. We also write XZ = X ⊗F1 Z.

The construction of monoidal schemes and −⊗F1 Z implies immediately that the dual ∆op of
a fan ∆ of a toric variety provides the descend datum to a monoidal scheme X such that XZ is
intrinsically isomorphic to the toric variety associated with ∆.

Let us describe some examples of monoidal schemes.

Example 3.3 (SpecF1). We define F1 as the monoid {0, 1}, which is the initial object in M0.
Its spectrum SpecF1 is the terminal object in the category of blue schemes. It has a unique
point, which is the zero ideal (0). Similarly, if G is an abelian group and G0 = {0} ∪ G is the
associated monoid, then SpecG0 consists of a unique point, which is (0). Thus monoids A such
that all elements a 6= 0 are invertible are the correct generalization of fields in the categoryM0.

Example 3.4 (Affine spaces). Let A = F1[T1, . . . , Tn] be the monoid

{0} ∪ {T e11 · · ·T
en
n | e1, . . . , en ≥ 0 },

which is the free monoid in T1, . . . , Tn over F1. Since the associated ring A+
Z is the polynomial

ring Z[T1, . . . , Tn]+, we define AnF1
= SpecF1[T1, . . . , Tn].

We describe the underlying topological space of AnF1
for n = 1 and n = 2. The underlying

topological space of the affine line A1
F1

= SpecF1[T ] over F1 consists of the prime ideals (0) = {0}
and (T ) = {0} ∪ {T i}i>0, the latter one being a specialization of the former one. The affine
plane A2

F1
= SpecF1[S, T ] over F1 has four points (0), (S), (T ) and (S, T ). More generally, the

prime ideals of F1[T1, . . . , Tn] are of the form pI = (Ti)i∈I where I ranges through the subsets
of {1, . . . , n}. The affine line and the affine plane are illustrated in Figure 1. The lines between
two points indicate that the point at the top is a specialization of the point at the bottom.

(T )

(0)

(T )(S)

(S,T )

(0)

Figure 1. The affine line and the affine plane over F1

Example 3.5 (Tori). Let G be a free multiplicatively written abelian group generated by
T1, . . . , Tn. We denote the monoidG0 by F1[T

±1
1 , . . . , T±1n ] in analogy to the notation F1[T1, . . . , Tn].

Its base extension to Z is Z[T±11 , . . . , T±1n ], which means that the base extension of SpecG0 is

isomorphic to Gn
m,Z. Consequently we denote SpecF1[T

±1
1 , . . . , T±1n ] by Gn

m,F1
, and call it the

(split) torus of rank n over F1. Since G is a group, the topological space of Gn
m,F1

consists of

one point, which is the zero ideal (0).
Since the group law of Gn

m,Z is a toric morphism, it descends to F1, i.e. Gn
m,F1

is a group object
in the category of monoidal schemes. We will discuss group schemes over F1 in more detail in
Lecture 3 where we will see that tori and constant group schemes are essentially the only group
schemes that have models in the category of monoidal schemes.

Example 3.6 (Projective spaces). Since the projective n-space Pn is a toric variety, the choice
of a fan for Pn defines a monoidal scheme PnF1

whose base extension to Z is PnZ. We describe
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the projective line in more detail. We can cover P1 by to affine lines, whose intersection is
isomorphic to Gm, i.e.

P1 = A1 qGm A1.

We can descend all the affine scheme on the right together with their inclusions to F1, which
yields the identity

P1
F1

= A1
F1
qGm,F1

A1
F1
.

This means that P1
F1

has two closed points “[1 : 0]” and “[0 : 1]” and one generic point “[1 : 1]”:

[1 : 1]

[0 : 1] [1 : 0]

Figure 2. The projective line over F1

Note that the closed points correspond with the set P1 as defined in Section 1. This holds
true for all F1-models PnF1

since the closed points correspond to the maximal cones in the fan of
Pn.

Exercise 3.7. Identify the underlying topological space of P2
F1

with the following illustration:

[1 : 0 : 0]

[1 : 1 : 0]

[1 : 1 : 1]

[0 : 1 : 1]

[0 : 0 : 1]
[0 : 1 : 0]

[1 : 0 : 1]

Figure 3. The projective plane over F1

All of our examples are toric varieties, which is not surprising from the way monoidal schemes
were derived from toric geometry. The following theorem makes the connection between monoidal
schemes and toric varieties precise.

Theorem 3.8 ([Dei08]). Let X be a monoidal scheme. If XZ is a connected separated integral
scheme of finite type, then it is a toric variety.

As a consequence, we see the limitations of F1-geometry if we work only with monoidal
schemes. For instance, Grassmannians Gr(k, n) with 2 ≤ k ≤ n− 2 and reductive groups other
than tori do not have F1-models as monoidal schemes. In the next lecture, we will extend the
category of monoidal schemes to the category of blue schemes, which will be large enough to
contain F1-models of these schemes.



LECTURES ON F1 9

Lecture 2: Blueprints and blue schemes

A blueprint can be seen as a multiplicatively closed subset A (with 0 and 1) of a semiring
R. The addition of the semiring allows us to express relations

∑
ai =

∑
bj between sums of

elements ai and bj of A. In the extreme case A = R, the blueprint is a semiring, and in the
other extreme case A ⊂ R where R = Z[A]/(0) is the monoid ring of A, the blueprint behaves
like a multiplicative monoid.

Its geometric counterpart, the notion of a blue scheme, includes monoidal schemes and usual
schemes as subclasses. Beyond these well-known objects, it contains also a class of semiring
schemes as well as F1-models for all schemes of finite type. This makes the category of blue
schemes flexible enough to treat several problems in F1-geometry.

We will give precise definitions of blueprints and blue schemes in this lecture.

4. Blueprints

A blueprint B is a monoid A with zero together with a pre-addition R, i.e. R is an equivalence
relation on the semiring N[A] = {

∑
ai|ai ∈ A} of finite formal sums of elements of A that satisfies

the following axioms (where we write
∑
ai ≡

∑
bj whenever (

∑
ai,
∑
bj) ∈ R):

(i) The relation R is additive and multiplicative, i.e. if
∑
ai ≡

∑
bj and

∑
ck ≡

∑
dl, then∑

ai +
∑
ck ≡

∑
bj +

∑
dl and

∑
aick ≡

∑
bjdl.

(ii) The absorbing element 0 of A is in relation with the zero of N[A], i.e. 0 ≡ (empty sum).
(iii) If a ≡ b, then a = b (as elements in A).

A morphism f : B1 → B2 of blueprints is a multiplicative map f : A1 → A2 between the
underlying monoids of B1 and B2 with f(0) = 0 and f(1) = 1 such that for every relation∑
ai ≡

∑
bj in the pre-addition R1 of B1, the pre-addition R2 of B2 contains the relation∑

f(ai) ≡
∑
f(bj). Let Blpr be the category of blueprints.

In the following, we write B = A�R for a blueprint B with underlying monoid A and pre-
addition R. We adopt the conventions used for rings: we identify B with the underlying monoid
A and write a ∈ B or S ⊂ B when we mean a ∈ A or S ⊂ A, respectively. Further, we think
of a relation

∑
ai ≡

∑
bj as an equality that holds in B (without the elements

∑
ai and

∑
bj

being defined, in general).
Given a set S of relations, there is a smallest equivalence relation R on N[A] that contains S

and satisfies (i) and (ii). If R satisfies also (iii), then we say that R is the pre-addition generated
by S, and we write R = 〈S〉. In particular, every monoid A with zero has a smallest pre-addition
R = 〈∅〉.

4.1. Relation to rings and semirings. The idea behind the definition of a blueprint is that it
is a blueprint of a ring (in the literal sense): given a blueprint B = A�R, one can construct the
ring B+

Z = Z[A]/I(R) where I(R) is the ideal {
∑
ai−

∑
bj ∈ Z[A]|

∑
ai ≡

∑
bj in R}. We can

extend a blueprint morphism f : B1 → B2 linearly to a ring homomorphism f+Z : B+
1,Z → B+

2,Z
and obtain a functor (−)+Z : Blpr → Rings from blueprints to rings.

Similarly, we can form the quotient B+ = N[A]/R, which inherits the structure of a semiring
by Axiom (i). This defines a functor (−)+ : Blpr → SRings from blueprints to semirings.

On the other hand, semirings can be seen as blueprints: given a (commutative and unital)
semiring R, we can define the blueprint B = A�R where A = R• is the underlying multiplicative
monoid of R and R = {

∑
ai ≡

∑
bj |
∑
ai =

∑
bj in R}. Under this identification, semiring

homomorphisms are nothing else than blueprint morphisms, i.e. we obtain a full embedding
ιS : SRings → Blpr from the category of semirings into the category of blueprints. This
allows us to identify rings with a certain kind of blueprints, and we can view blueprints as a
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generalization of rings and semirings. Accordingly, we call blueprints in the essential image of
ιS semirings and we call blueprints in the essential image of the restriction ιR : Rings → Blpr
of ιS rings.

The semiring B+ and the ring B+
Z come together with canonical maps B → B+ and B → B+

Z ,
which are blueprint morphisms.

Remark 4.1. Note that we use the symbol “+” whenever we want to stress that the pre-addition
is indeed an addition, i.e. the blueprint in question is a semiring. Since colimits of blueprints do
not preserve addition, we are forced to invent notations like Z[T ]+, B ⊗+Z C, +AnZ, +PnZ, +Gn

m,Z
to distinct the constructions in usual algebraic geometry from the analogous constructions for
blueprints and blue schemes.

4.2. Relation to monoids. Another important class of blueprints are monoids. Namely, a
monoid A with zero defines the blueprint B = A�〈∅〉. A morphism f : A1 → A2 of monoids
with zero is nothing else than a morphism of blueprints f : A1�〈∅〉 → A2�〈∅〉. This defines
a full embedding ιM0 : M0 → Blpr. This justifies that we may call blueprints in the essential
image of ιM0 monoids with zero and that we identify in this case A with B = A�〈∅〉.

Note that the functor −⊗F1 Z from monoids to rings is isomorphic to the composition (−)+Z ◦
ιM0 .

4.3. Cyclotomic field extensions. We give some other examples, which are of interest for the
purposes of this text. The initial object in Blpr is the monoid F1 = {0, 1}, the so-called field with
one element. More general, we define the cyclotomic field extension F1n of F1 as the blueprint
B = A�R where A = {0} ∪ µn is the union of 0 with a cyclic group µn = {ζin|i = 1, . . . , n}
of order n with generator ζn and where R is generated by the relations

∑n/d
i=0 ζ

di
n ≡ 0 for every

proper divisor d of n. The associated ring of F1n is the ring Z[ζn] of integers of the cyclotomic
field extension Q[ζn] of Q that is generated by the n-th roots of unity.

Of particular interest for Lecture 3 is the quadratic extension

F12 = {0,±1}�〈1 + (−1) ≡ 0〉
of F1. We say that a blueprint is with −1 if there exists a morphism F12→ B. Such a morphism
is necessarily unique. Note that a semiring R is a ring if and only if R is with −1.

4.4. Special linear group. We define the blueprint F1[SL2] as

F1[T1, T2, T3, T4]�〈T1T4 ≡ T2T3 + 1〉.
Then its universal ring F1[SL2]

+
Z is isomorphic to the coordinate ring Z[SL2] of the special linear

group SL2,Z.

4.5. Localization. Let B = A�R be a blueprint and S a multiplicative subset. Then the
localization of B at S is the blueprint S−1B = AS�RS where AS = S−1A is the localization of
the monoid A at S and where

RS =
〈 ∑ ai

1
≡
∑ bj

1

∣∣∣ ∑ ai ≡
∑

bj in B
〉
.

This comes together with the canonical morphism B → S−1B that sends a to a
1 .

4.6. Blue B-modules. Let M be a pointed set. We denote the base point of M by 0. A
pre-addition on M is an equivalence relation P on the semigroup N[M ] = {

∑
ai|ai ∈ M} of

finite formal sums in M with the following properties (as usual, we write
∑
mi ≡

∑
nj if

∑
mi

stays in relation to
∑
nj):

(i)
∑
mi ≡

∑
nj and

∑
pk ≡

∑
ql implies

∑
mi +

∑
pk ≡

∑
nj +

∑
ql,
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(ii) 0 ≡ (empty sum), and
(iii) if m ≡ n, then m = n (in M).

Let B = A�R be a blueprint. A blue B-module is a set M together with a pre-addition P and
a B-action B ×M →M , which is a map (b,m) 7→ b.m that satisfies the following properties:

(i) 1.m = m, 0.m = 0 and a.0 = 0,
(ii) (ab).m = a.(b.m), and
(iii)

∑
ai ≡

∑
bj and

∑
mk ≡

∑
nl implies

∑
ai.mk ≡

∑
bj .nl.

A morphism of blue B-modules M and N is a map f : M → N such that

(i) f(a.m) = a.f(m) for all a ∈ B and m ∈M and
(ii) whenever

∑
mi ≡

∑
nj in M , then

∑
f(mi) ≡

∑
f(nj) in N .

This implies in particular that f(0) = 0. We denote the category of blue B-modules by blModB.
Note that in case of a ring B, every B-module is a blue B-module, but not vice versa. Note
further that the category blModB is closed, complete and cocomplete. The trivial blue module
0 = {0} is an initial and terminal object of blModB.

Given a multiplicative subset S of B, we define the localization of M at S as the blue B-module
S−1M whose underlying set is

S−1M = (S ×M) / ∼

where (s,m) ∼ (s′,m′) if and only if there is a t ∈ S such that ts.m′ = ts′.m, and whose
pre-addition is

PS =
〈 ∑ mi

1
≡
∑ nj

1

∣∣∣ ∑mi ≡
∑

nj in M
〉

where we write m
s for the class of (s,m). The localization S−1M comes with the natural structure

of a blue S−1B-module that extends the action of B, and the map M → S−1M that maps m
to m

1 is a morphism of blue B-modules.

5. The prime spectrum and blue schemes

In this section, we introduce the spectrum of a blueprint B and embed the spectra in the
category of locally blueprinted spaces, which allows to glue affine pieces to blue schemes.

5.1. Ideals. An ideal of B is a subset I such that for all
∑
ai ≡

∑
bj + c with ai, Bj ∈ I also

c ∈ I and such that IB ⊂ I. This definition is reasoned by the following fact.

Proposition 5.1 ([Lor12a]). A subset I of B is an ideal if and only if there is a blueprint
morphism f : B → C such that I = f−1(0). In fact, there is a morphism f0 : B → C0 with
I = f−1(0) that is universal among all morphisms f : B → C with f(I) ⊂ {0}. We denote C0

by B/I and call it the quotient of B by I.

A prime ideal of B is an ideal p whose complement S = B − p is a multiplicative subset of
B. A maximal ideal is a proper ideal m that is not contained in any other proper ideal. We say
that B is integral if the multiplication by any non-zero element defines an injective map B → B.
We say that B is a blue field if every non-zero element is invertible.

The following facts extend from usual ring theory to all blueprints. An ideal I of B is prime
if and only if B/I is integral, and I is maximal if and only if B/I is a blue field.
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5.2. Locally blueprinted spaces. A local blueprint is a blueprint with a unique maximal
ideal. Consequently, the localization Bp = S−1B with S = B− p at a prime ideal p of B is local
since its unique maximal ideal is mp = pBp. Consequently, the quotient κ(p) = Bp/mp is a blue
field.

A locally blueprinted space is a topological space X together and a class of covering families
that form a site together with a sheaf OX in Blpr on this site such that the stalk

OX,x = colim
x∈U

OX(U)

is a local blueprint for every x ∈ X. We denote the maximal ideal of OX,x by mx and call OX
the structure sheaf of X. We call a covering family of X an admissible covering.

A local morphism of locally blueprinted spaces is a continuous map ϕ : X → Y that pulls back
covering families to covering families together with a morphism ϕ∗OY → OX of sheaves on X
such that the induced morphisms ϕx : OY,ϕ(x) → OX,x of stalks maps mϕ(x) to mx. This defines
the category LocBlprSp of locally blueprinted spaces.

5.3. The spectrum. The spectrum of B is the following locally blueprinted space. Its under-
lying topological space is the set SpecB endowed with the Zariski topology that is generated by
the open subset

Uh = { p ∈ SpecB |h /∈ p }
with h ∈ B. The class of covering families is generated by families of the form {Uh}h∈I with
I ⊂ B that admit a finite subset J ⊂ I such that the functor∏

h∈J
(−)[h−1] : blModB −→

∏
h∈J

blModB[h−1]

is conservative, i.e. if
∏
h∈J(f)[h−1] is an isomorphism, then f : M1 →M2 is an isomorphism of

blue B-modules. The structure sheaf OX on X is defined on open subsets U of X as the set of
functions

s : U −→
∐
p∈U

Bp

with s(p) ∈ Bp such that there is covering family {Uh}h∈I and elements sh ∈ B[h−1] for every
h ∈ I such that s(p) = sh

1 in Bq for all q ∈ Uh and all h ∈ I.

Note that the conservativeness of
∏
h∈J(−)[h−1] implies that X =

⋃
h∈J Uh. The converse is,

however, not true as the following example shows.

Example 5.2. Let k be a blue field. Consider the blueprint B = k × k�R where R is the
pre-addition that consists of relations∑

(ai, 0) ≡
∑

(bj , 0) and
∑

(0, ai) ≡
∑

(0, bj)

where
∑
ai ≡

∑
bj are relations in k. Then SpecB consists of the two prime ideals k×{0} and

{0}× k, endowed with the discrete topology since U(1,0) = {k×{0}} and U(0,1) = {{0}× k} are
open subsets. We have SpecB = U(1,0) ∪ U(0,1), but the functor

blModB −→ blModB[(1, 0)−1]× blModB[(0, 1)−1]

is not conservative as can be seen as follows. Let B′ = k × k�R′ be the blueprint where R′ is
the pre-addition {∑

(ai, ci) ≡
∑

(bj , dj)
∣∣∑ ai ≡

∑
bj and

∑
ci ≡

∑
dj in k

}
,
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which contains the pre-addition R properly. Then the identity map f : B → B′ is a morphism
of blue B-modules that is not an isomorphism. However, the localizations B[(1, 0)−1] and
B′[(1, 0)−1] are both isomorphic to k and

f [(1, 0)−1] : B[(1, 0)−1] −→ B′[(1, 0)−1]

is an isomorphism of blue B[(1, 0)−1]-modules. Similarly, f [(0, 1)−1] is an isomorphism. There-
fore {U(1,0), U(0,1)} is not an admissible covering of SpecB.

An important consequence is of the definition of the spectrum of a blueprint is the following.

Theorem 5.3. Let X = SpecB and h ∈ B. Then there is a canonical isomorphism B[h−1] '
OX(Uh). In particular, B ' OX(X).

This theorem follows essentially from the comparison of blue schemes with relative schemes
in [Lor12c] and the machinery of relative schemes in Toën and Vaquié’s paper [TV09].2

Exercise 5.4. Consider the monoid F1[a1, a2, h1, h2]/ ∼ with the relation a1h2 ∼ a2h1 and the
blueprint B = A�〈h1 + h2 ≡ 1〉. Show that SpecB = Uh1 ∪ Uh2 , but that {Uh1 , Uh2} is not an
admissible covering of SpecB. Hint: consider the section that sends a prime ideal p to either
a1
h1

or a2
h2

.

5.4. Blue schemes. An affine blue scheme is a locally blueprinted space that is isomorphic to
the spectrum of a blueprint. A blue scheme is a locally blueprinted space that has an admissible
covering by affine blue schemes. A morphism of blue schemes is a local morphism of locally
blueprinted spaces. We denote the category of blue schemes by SchF1 .

It is easy to see that a morphism of blueprints defines a local morphism between their spectra
by pulling back prime ideals. By the techniques from [Lor12a], we derive the converse statement.

Theorem 5.5. The contravariant functor Spec : Blpr → SchF1 is a full embedding of categories.
Consequently, every morphism ϕ : X → Y of blue schemes is locally given by morphisms of
blueprints.

This statement justifies the name locally algebraic morphisms for morphisms of blue schemes.
We will use this name to distinct this class of morphisms from Tits morphisms of blue schemes,
which we will introduce in Lecture 3.

5.5. Monoidal, semiring and Grothendieck schemes. The category of monoidal schemes
embeds naturally as a full subcategory into the category of blue schemes by considering a local
monoidal space as a locally blueprinted space. This defines a full embedding of the category of
monoidal schemes into the category of blueprints. In the following, we will identify the category
of monoidal schemes with the essential image of this embedding. In other words, a blue scheme
is monoidal if it has an affine open covering by spectra of monoids. In particular, the examples
at the end of Lecture 1 are blue schemes.

Similarly, the category of Grothendieck schemes is a full subcategory of the category of blue
schemes by considering locally ringed spaces as locally blueprinted spaces. The essential image
of this embedding are blue schemes that have an affine open covering by spectra of rings. We
denote the category of Grothendieck schemes by Sch+

Z .
The class of Grothendieck schemes is a subclass of semiring schemes, which are blue schemes

with an admissable affine open covering by spectra of semirings. We denote the full subcategory
of semiring schemes by Sch+

N .

2Note that the definition of SpecB differs from the definitions made in previous texts on blueprints. With
respect to the former definition, Theorem 5.3 is not true.
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The functors (−)+ from blueprints to semirings and (−)+Z from blueprints to rings extend to
functors

(−)+ : SchF1 −→ Sch+
N and (−)+Z : SchF1 −→ Sch+

Z .

The base extensions to semirings and rings come with canonical morphisms X+ → X and
βX : X+

Z → X of blue schemes.

Note that the restriction of (−)+Z to monoidal schemes is isomorphic to the functor − ⊗F1 Z
that we considered in Lecture 1.

5.6. Descending closed subschemes. We know already that toric varieties have models as
monoidal schemes. Indeed, every closed subscheme of a toric variety descends to F1 as we will
explain in the following.

Let X be a monoidal scheme and X+
Z be the universal Grothendieck scheme of X, which is a

toric variety under certain assumption (see Theorem 3.8). Let Z be a closed subscheme of X+
Z .

If X = SpecB is affine, then X+
Z = SpecB+

Z is affine and we have B+
Z = Z[A]/I(R) if

B = A�R and
I(R) = {

∑
ai −

∑
bj |

∑
ai ≡

∑
bj in B }.

In this case Z is affine as a closed subscheme of X+
Z , i.e. Z = SpecZ[A]/J for an ideal J of Z[A]

that contains I(R). If we define

RZ = {
∑
ai ≡

∑
bj |

∑
ai −

∑
bj ∈ J },

then Y = Spec
(
A�RZ

)
3 is a subscheme of X such that Y +

Z ' Z.
This process is compatible with patching affine pieces, so that we obtain a subscheme Y of

X with Y +
Z ' Z for any closed subscheme Z of X+

Z . In particular, the topological space of Y
is a subspace of the topological space of X. We call a scheme Y that is derived from a closed
subscheme of X+

Z a closed subscheme of X, and the inclusion Y → X a closed immersion.
We apply this mechanism to the following examples.

Example 5.6 (Special linear group). We considered already in paragraph 4.4 the blueprint
F1[SL2] = F1[T1, T2, T3, T4] � 〈T1T4 ≡ T2T3 + 1〉, which is a quotient of the free blueprint
F1[T1, T2, T3, T4]. Therefore the blue scheme SL2,F1 = SpecF1[SL2] is a subscheme of A4

F1
.

In Example 3.4, we saw that the points of A4
F1

are the ideals pI = (Ti)i∈I for a subset I of
{1, 2, 3, 4}. Since 1 cannot be contained in any prime ideal and T1T4 ≡ T2T3 + 1, either T1T4 or
T2T3 is not contained in a prime ideal pI of SL2,F1 . This is the only restriction for a point of
A4
F1

to be contained in SL2,F1 . Thus we can illustrate SL2,F1 as follows.

(0)

(T3) (T4)

(T1,T4)(T2,T3)

(T2) (T1)

Figure 4. The special linear group SL2,F1

We like to draw the readers attention to the closed points, which are encircled in the illus-
tration. If we write the coordinates in matrix form

(
T1 T2
T3 T4

)
, then the point (T2, T3) corresponds

3Note that RZ might not satisfy axiom (iii) of a pre-addition. In this case, we have to take the quotient A′ of
A that identifies all elements a and b with a ≡ b. Then we obtain a pre-addition R′

Z on A′, and it is the blueprint
A′�R′

Z that we mean when we write A�RZ .
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to the matrices
(
T1 0
0 T4

)
with T2 = T3 = 0. These form the diagonal torus T of SL2. The other

closed point (T1, T4) corresponds to the matrices
(

0 T2
T3 0

)
, which form the antidiagonal torus(

0 1
−1 0

)
T of SL2. The two subschemes T and

(
0 1
−1 0

)
T coincide with the elements of the Weyl

group W of SL2.
This indicates a link between the closed points of SL2,F1 with the Weyl group of SL2, which

we would like to interpret as the group of F1-rational points of SL2,F1 . Note, however, that
Hom(SpecF1, SL2,F1) consists of three morphisms with respective images (T2, T3), (T2) and (T3).

Note that in a similar manner, we can define blue schemes that are F1-models of other split
Chevalley groups. In [Lor12b], one finds a list of explicit constructions for SLn, GLn, +P(2n)
and SO(n) (both odd and even n). All these F1-models have in common that the set of closed
points corresponds to the respective Weyl group. We will explain this connection in more detail
in the upcoming lecture.

To give one explicit example: the blue scheme

GL2,F1 = Spec
(
F1[T1, T2, T3, T4, δ]�〈δT1T4 ≡ δT2T3 + 1〉

)
is an F1-model of GL2, whose underlying topological space is homeomorphic to the topological

space of SL2,F1 . Note that δ plays the role of det
(
T1 T2
T3 T4

)−1
.

Example 5.7 (Grassmannians). By the strategy of paragraph 5.6, we can descend every
closed subscheme of +PnZ to a subscheme of PnF1

. This allows us to define Grassmannians
over F1 as blue schemes with help of the defining Plücker relations. For instance Gr(2, 4)Z =
Proj

(
Z[T0, . . . , T5]/(T0T5 − T1T4 + T2T3) descends to Gr(2, 4)F1 whose underlying topological

space can be illustrated as follows.

Figure 5. The Grassmannian Gr(2, 4)F1

The bold lines indicate the generators of an ideal p = (Ti)i∈I of the “homogeneous coordinate
blueprint” F1[T0, . . . , T5]�〈T0T5 + T2T3 ≡ T1T4〉 of Gr(2, 4)F1 . See [LPL12] for more details.

Note that, once more, the six closed points correspond to the expected set M2,4 of F1-rational
points of Gr(2, 4), which has little in common with set morphism set Hom(SpecF1,Gr(2, 4)F1).
As we will see in Lecture 4, this behaviour occurs for all Grassmannians defined by Plücker
relations: the closed points of Gr(k, n)F1 correspond to the elements of the set Mk,n.

It will be the task of the next lecture to resolve the discrepancy between the expected value
of the set of F1-rational points and the morphism set Hom(SpecF1,−).
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Lecture 3: F1-rational points and Chevalley groups over F1

6. The Problem with the concept of F1-rational points

To start with, we like to collect what we have achieved so far. Recall the diagram from the
introduction in Lecture 1.

Q F2 F3 · · ·

Sets Z
−⊗ZQ

@@@@@@@@

−⊗ZF2
~~~~~~~ −⊗ZF3

nnnnnnnnnnnnnnn

F1

W
F1-rational

points

DDDDDDDD −⊗F1Z

~~~~~~~

In the first two lectures, we have constructed F1-models of projective spaces, Grassmannians,
SL2, GL2, and other schemes in terms of data that one can almost consider as natural givens: the
fan of projective space; the Plücker relations for Grassmannians; the standard representations
of SL2 and GL2. We saw that for these models the set of closed points corresponds to the sets
that we expect as the sets of F1-rational points. This indicates that the theory of blue schemes
contains F1-models of schemes that we are interested in, and gives a reasonable meaning to
them.

We saw, however, that in none of the examples of a blue scheme X, the closed points of
correspond to the morphisms in Hom(SpecF1, X). If we like to stick with the theory of monoidal
schemes and blue schemes, then this means that the functor W in the above diagram cannot
be Hom(SpecF1,−), which would be the set of F1-rational points in the literal sense. Another
problem is that the group laws of Chevalley groups other than split tori do not descend to locally
algebraic morphisms between the described F1-models.

There is another, more profound reason why W cannot be Hom(SpecF1,−) if we want Tits’
dream to become true. Let T be the diagonal torus of SL2 and N its normalizer, which is T ∪wT
where w =

(
0 1
−1 0

)
. Then the Weyl group of SL2 (w.r.t. the diagonal torus) is per definition

the quotient W = N(Z)/T (Z). If we had an identification W = Hom(SpecF1, SL2,F1), then we
obtain a map

σ : W = Hom(SpecF1,SL2,F1)
−⊗F1Z−→ Hom(SpecZ, SL2,Z) = SL2(Z).

As explained in the introduction in Lecture 1, σ should map T to an element of T (Z) and wT
to an element of wT (Z). If we furthermore expect that −⊗F1 Z commutes with products, which
is necessary to base extend group schemes over F1 to group schemes over Z, then it follows that
σ : W → SL2(Z) is a group homomorphism. This is, however, not possible since wT (Z) does
not contain an element of order 2.

In the course of this lecture, we will define the rank space of a blue scheme (under some
simplifying assumptions), which is closely connected to the set of closed points of a blue scheme.
The rank space is the key to define the functor W, called the Weyl extension functor, and a
class of so-called Tits morphisms that allow us to descend group laws to F1.

7. The rank space

A blueprint B is cancellative if
∑
ai+c ≡

∑
bj+c implies

∑
ai ≡

∑
bj . Note that a blueprint

B is cancellative if and only if the canonical morphism B → B+
Z is injective. A blue scheme is

cancellative if it is covered by spectra of cancellative blueprints. Recall that F1 is the monoid
{0, 1} and that F12 is the blueprint {0,±1}�〈1 + (−1) ≡ 0〉.
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Let X be a blue scheme and x ∈ X a point. As in usual scheme theory, every closed subset Z
of X comes with a natural structure of a (reduced) closed subscheme of X, cf. [Lor12b, Section
1.4]. The rank rkx of x is the dimension of the Q-scheme x+Q where x denotes the closure of x
in X together with its natural structure as a closed subscheme. Define

r = min { rkx | x ∈ X }.

For the sake of simplicity, we will make the following general hypothesis on X.

(H) The blue scheme X is connected and cancellative. For all x ∈ X with rkx = r, the
closed subscheme x of X is isomorphic to either Gr

m,F1
or Gr

m,F12
.

This hypothesis allows us to surpass certain technical aspects in the definition of the rank space.
Assume that X satisfies (H). Then the number r is denoted by rkX and is called the rank of

X. The rank space of X is the blue scheme

Xrk =
∐

rkx=r

x,

and it comes together with a closed immersion ρX : Xrk → X.
Note that Hypothesis (H) implies that Xrk is the disjoint union of tori Gr

m,F1
and Gr

m,F12
.

Since the underlying set of both Gr
m,F1

and Gr
m,F12

is the one-point set, the underlying set of

Xrk is W(X) = {x ∈ X|rkx = r}. Note further that Xrk,+
Z '

∐
rkx=r

+Gr
m,Z.

8. The Tits category and the Weyl extension

A Tits morphism ϕ : X → Y between two blue schemes X and Y is a pair ϕ = (ϕrk, ϕ+) of a
locally algebraic morphism ϕrk : Xrk → Y rk and a locally algebraic morphism ϕ+ : X+ → Y +

such that the diagram

Xrk,+
Z

ϕrk,+
Z //

ρ+X,Z
��

Y rk,+
Z

ρ+Y,Z
��

X+
Z

ϕ+
Z // Y +

Z

commutes where ϕ+
Z is the base extension of ϕ+ to Grothendieck schemes and ϕrk,+

Z is the base

extension of ϕrk to Grothendieck schemes. We denote the category of blue schemes together
with Tits morphisms by SchT and call it the Tits category.

The Tits category comes together with two important functors. The Weyl extension W :
SchT → Sets sends a blue scheme X to the underlying set W(X) = {x ∈ X|rkx = r} of
Xrk and a Tits morphism ϕ : X → Y to the underlying map W(ϕ) : W(X) → W(Y ) of the
morphism ϕrk : Xrk → Y rk. The base extension (−)+ : SchT → Sch+ sends a blue scheme X
to its universal semiring scheme X+ and a Tits morphism ϕ : X → Y to ϕ+ : X+ → Y +. We
obtain the following diagram of “base extension functors”

Sets Sch+
Z Sch+

R

Sch+
N

(−)+Z

EEEEEEEE (−)+R

yyyyyyyy

SchT

W

>>>>>>>>>>>>>>>>>>>> (−)+

wwwwwwww
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from the Tits category SchT to the category Sets of sets, to the category Sch+
Z of Grothendieck

schemes and to the category Sch+
R of semiring schemes over any semiring R.

Theorem 8.1 ([Lor12b, Thm. 3.8]). All functors appearing in the above diagram commute with
finite products. Consequently, all functors send (semi)group objects to (semi)group objects.

9. Tits-Weyl models

A Tits monoid is a (not necessarily commutative) monoid in SchT , i.e. a blue scheme G
together with an associative multiplication µ : G × G → G in SchT that has an identity ε :
SpecF1 → G. We often understand the multiplication µ implicitly and refer to a Tits monoid
simply by G. The Weyl extension W(G) of a Tits monoid G is a unital associative semigroup.
The base extension G+ is a (not necessarily commutative) monoid in Sch+

N .
Given a Tits monoid G satisfying (H) with multiplication µ and identity ε, then the image of

ε : SpecF1 → G consists of a closed point e of X. The closed reduced subscheme e = {e} of G
is called the Weyl kernel of G.

Lemma 9.1 ([Lor12b, Lemma 3.11]). The multiplication µ restricts to e, and with this, e is
isomorphic to the torus Gr

m,F1
as a group scheme.

This means that e+Z is a split torus T ' +Gr
m,Z of G = G+

Z , which we call the canonical torus

of G (w.r.t. G).
If G is an affine smooth group scheme of finite type, then we obtain a canonical morphism

Ψe : Grk,+
Z /e+Z −→ W (T )

where W (T ) = NormG(T )/CentG(T ) is the Weyl group of G w.r.t. T . We say that G is a
Tits-Weyl model of G if T is a maximal torus of G and Ψe is an isomorphism.

This definition has some immediate consequences. We review some definitions, before we
state Theorem 9.2. The ordinary Weyl group of G is the underlying group W of W (T ) . The
reductive rank of G is the rank of a maximal torus of G. For a split reductive group scheme, we

denote the extended Weyl group or Tits group NormG(T )(Z) by W̃ (cf. [Lor12b, Section 3.3]).
For a blueprint B, the set GT(B) of Tits morphisms from SpecB to G inherits the structure

of an associative unital semigroup. In case, G has several connected components, we define the
rank of G as the rank of the connected component of G that contains the image of the unit
ε : SpecF1 → G.

Theorem 9.2 ([Lor12b, Thm. 3.14]). Let G be an affine smooth group scheme of finite type. If
G has a Tits-Weyl model G, then the following properties hold true.

(i) The Weyl group W(G) is canonically isomorphic to the ordinary Weyl group W of G.
(ii) The rank of G is equal to the reductive rank of G.
(iii) The semigroup GT(F1) is canonically a subgroup of W(G).
(iv) If G is a split reductive group scheme, then GT(F12) is canonically isomorphic to the

extended Weyl group W̃ of G.

The following theorem is proven in [Lor12b] for a large class of split reductive group schemes
G and their Levi- and parabolic subgroups. Markus Reineke added an idea, which helped to
extend it to all split reductive group schemes.

Theorem 9.3. (i) Every split reductive group scheme G has a Tits-Weyl model G.
(ii) Let T be the canonical torus of G and M a Levi subgroup of G containing T . Then M

has a Tits-Weyl model M that comes together with a locally closed embedding M → G
of Tits-monoids that is a Tits morphism.
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(iii) Let P a parabolic subgroup of G containing T . Then P has a Tits-Weyl model P that
comes together with a locally closed embedding P → G of Tits-monoids that is a Tits
morphism.

(iv) Let U be the unipotent radical of a parabolic subgroup P of GLn,Z that contains the
diagonal torus T . Then U , P and GLn,Z have respective Tits-Weyl models U , P and
GLn,F1, together with locally closed embeddings U → P → GLn,F1 of Tits-monoids that
are Tits morphisms and such that T is the canonical torus of P and GLn,Z.

10. Total positivity

Matrix coefficients of particular importance are the generalized minors of Fomin and Zelevin-
sky and elements of Lustzig’s canonical basis. There is a link to Tits-Weyl models, but this is
far from being well-understood. In the example of SLn, however, we can make the connection
to generalized minors precise.

Let I and J be subsets of {1, . . . , n} of the same cardinality k. Then we can consider the
matrix minors

∆I,J(A) = det(ai,j)i∈I,j∈J
of an n×n-matrix A = (ai,j)i,j=1,...,n. Following Fomin and Zelevinsky, we say that a real matrix
A of determinant 1 is totally non-negative if ∆I,J(A) ≥ 0 for all matrix minors ∆I,J .

Let F1[∆I,J ] be the free monoid with zero that is generated by all matrix minors ∆I,J for
varying k ∈ {1, . . . , n − 1} and subsets I, J ⊂ {1, . . . , n} of cardinality k. Let R be the pre-
addition of F1[∆I,J ] that consists of all additive relations

∑
ai ≡

∑
bj between generalized

minors that hold in the coordinate ring Z[SLn] of SLn over Z. Define the blueprint

F1[SLn] = F1[∆I,J ]�R.
and the blue scheme SLn,F1 = SpecF1[SLn]. The following theorem is due to Javier López Peña,
Markus Reineke and the author.

Theorem 10.1. The blue scheme SLn,F1 has a unique structure of a Tits-Weyl model of SLn,Z.
It satisfies that SLn,F1(R≥0) is the semigroup of all totally non-negative matrices.

Remark 10.2. The Tits-Weyl model SLn,F1 yields the notion of matrices A ∈ SLn(R) with
coefficients in any semiring R. This might be of particular interest in the case of idempotent
semirings as the tropical real numbers.
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Lecture 4: Quiver Grassmannians and Euler characteristics

11. Results on Euler characteristics, so far

In the previous lectures, we have seen that there is a natural correspondence

W(PnF1
) =

{
[1 : 0 : · · · : 0], . . . , [0 : · · · : 0 : 1]

}
,

which shows that the cardinality of W(PnF1
) equals the Euler characteristic of the complex

projective n-space, i.e.
#W(PnF1

) = n+ 1 = χ
(
Pn(C)

)
.

This phenomenon extends to the Grassmannians Gr(k, n)F1 that are defined by Plücker relations.

Proposition 11.1. The blue scheme Gr(k, n)F1 satisfies Hypothesis (H) and

#W
(
Gr(k, n)F1

)
=

(
n

k

)
= χ

(
Gr(k, n)(C)

)
.

We would like to extend this connection between the cardinality of the Weyl extension of a
projective blue scheme and the Euler characteristic of the space of complex points to a larger
class of varieties. A useful fact is the following.

Lemma 11.2. The rank of any non-empty closed connected subscheme of PnF1
with Hypothesis

(H) is 0.

Proof. Let X be a closed subscheme of PnF1
with Hypothesis (H). Let x ∈ X be a point. If

rkx = 0, then we have nothing to prove. If rkx > 0, then the {x}+Q is affine and a locally closed

subscheme of +PnQ. Its closure in +PnQ contains a point that maps to some point y 6= x of X,

and {y}+Q is of a smaller dimension than {x}+Q. Thus rk y < rkx, which shows that X always
contains a point of rank 0. �

The following examples show some limitations of the interpretation of the Euler characteristic
of the complex scheme as the cardinality of the Weyl extension.

Example 11.3 (Elliptic curve). Let X be the closed subscheme of P2
F1

that is associated to

the elliptic curve with equation T 2
2 T3 = T 3

1 + T1T
2
3 in P2

Z. Then we see that X+
Z contains two

k-rational points with coordinates [0 : 1 : 0] and [0 : 0 : 1], and all other k-rational points are
of the form [t1 : t2 : t3] with t1t2t3 6= 0. This means that the image of the immersion X → P2

F1

consists of the three points [0 : 1 : 0], [0 : 0 : 1] and [1 : 1 : 1], cf. 3.7. The former two points
are of rank 0 while [1 : 1 : 1] is of rank 1. Since the residue fields of the two rank 0-points is F1,
i.e. the subscheme supported at these points is isomorphic to G0

m,F1
, the cubic curve X over F1

satisfies Hypothesis (H).
From this we see that W(X) = {[0 : 1 : 0], [0 : 0 : 1]}. However, the Euler characteristic of

the complex spaces X(C), which is a topological torus, is 0.

Example 11.4 (Skew projective line). Consider the closed subschemeX of P2
F1

that is associated

with the closed subscheme of P2
Z that is defined by the equation T1 + T2 + T3 = 0. Then we see

that X has three closed points “[1 : −1 : 0]”, “[−1 : 0 : 1]” and “[0 : 1 : −1]”, which are of rank
0 and whose residue field is F12, i.e. the subscheme supported at these points is isomorphic to
G0
m,F12

. Thus X satisfies Hypothesis (H) and its Weyl extension is

W(X) = {[1 : −1 : 0], [−1 : 0 : 1], [0 : 1 : −1]}.
However, X+

Z is isomorphic to P1
Z, and thus W(X) = 3 6= 2 = χ

(
X(C)

)
.
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12. Quiver Grassmannians

Fomin and Zelevinsky introduced cluster algebras as a tool to better understand Lusztig’s
canonical bases for quantum groups. A priori, cluster algebras are defined in terms of a re-
cursive process, which makes it difficult to get hold of them. In 2006, however, Caldero and
Chapoton published a formula that expresses cluster variables as elementary functions in the
Euler characteristics of quiver Grassmannians. This formula made it possible to describe cluster
algebras explicitly in terms of generators and relation and caused an active interest in the Euler
characteristics of quiver Grassmannians in recent years.

This creates a mutual interest between quiver Grassmannians and F1-geometry. On the one
side, F1-geometry searches for structure that rigidifies schemes in order to descend them to F1.
It turns out that quiver Grassmannians come with such a rigidifying structure. On the other
side, a successful interpretation of the Euler characteristic of a complex scheme in terms of its
F1-rational points might give access to new methods to compute Euler characteristics.

Note that every projective scheme can be realized as a quiver Grassmannian (see [Rei13]).
Therefore quiver Grassmannians are suited as a device to define F1-models of projective schemes.
We will explain how this works in the following. We refer to Section 4 of [Lor12b] for references
on the notions in the rest of this lecture.

A quiver is a finite directed graph Q. We denote the vertex set by Q0, the set of arrows by Q1,
the source map by s : Q1 → Q0 and the target map by t : Q1 → Q0. A (complex) representation
of Q is a collection of complex vector spaces Mi for each vertex i ∈ Q0 together with a collection
of C-linear maps Mα : Mi → Mj for each arrow α : i → j in Q1. We write M =

(
(Mi), (Mα)

)
for a representation of Q. The dimension vector dimM of M is the tuple d = (di) where di is
the dimension of Mi. A subrepresentation of M is a collection of C-linear subspaces Ni of Mi for
each vertex i ∈ Q0 such that the linear maps Mα : Mi → Mj restrict to linear maps Ni → Nj

for all arrows α : i→ j.
Let e = (ei) be a tuple of non-negative integers with ei ≤ di for all i ∈ Q0. Then there is a

complex scheme Gre(M)C whose set of C-rational points corresponds to the set

Gre(M,C) =
{
N ⊂M subrepresentation

∣∣ dimN = e
}
.

The choice of a basis Bi for each vector space Mi defines a closed embedding

Gre(M)C −→
∏
i∈Q0

Gr(ei, di)C

of the quiver Grassmannian into a product of usual Grassmannians. This endows Gre(M) with
the structure of a complex variety.

Remark 12.1. In fact, Gre(M)C comes with the structure of a complex scheme. In words, the
scheme theoretic definition of Gre(M) is as the fibre at M of the universal Q-Grassmannian of
e-dimensional subrepresentations that fibres over the moduli space of representations of Q. For
the following considerations, however, it suffices to consider Gre(M)C as a complex variety.

12.1. F1-models of quiver Grassmannians. Let Q be a quiver, M be a representation of
Q with basis B =

⋃
Bi and e a dimension vector for Q. We assume that the C-linear maps

Mα correspond to matrices with integral coefficients w.r.t. the basis B. We call such a basis an
integral basis of M . An integral basis yields an integral model Gre(M) of the complex quiver
Grassmannian Gre(M)C.

Define |e| =
∑
ei, |d| =

∑
di and m =

(|d|
|e|
)
− 1. Consider the series of closed embeddings

Gre(M) −→
∏
i∈Q0

Gr(ei, di) −→ Gr(|e| , |d|) −→ +PmZ .
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As explained in Paragraph 5.6, this defines the F1-model Gre(M)F1 of Gre(M).

12.2. Tree modules. Let M be a representation of Q with basis B. Let α : s→ t be an arrow
of Q and b ∈ Bs. Then we have the equations

Mα(b) =
∑
b′∈Bt

λα,b,c c

with uniquely determined coefficients λα,b,c ∈ C. The coefficient quiver of M w.r.t. B is the
quiver Γ = Γ(M,B) with vertex set Γ0 = B and with arrow set

Γ1 =
{

(α, b, c) ∈ Q1 × B × B
∣∣ b ∈ Bs(α), c ∈ Bt(α) and λα,b,c 6= 0

}
.

It comes together with a morphism F : Γ→ Q that sends b ∈ Bp to p and (α, b, c) to α.
The representation M is called a tree module if there exists a basis B of M such that the

coefficient quiver Γ = Γ(M,B) is a disjoint union of trees. We call such a basis a tree basis for
M .4

Note that if Γ is a disjoint union of trees, then we can replace the basis elements b by certain
non-zero multiples b′ such that all λα,b,c equal 1. Thus we do not restrict the class of quiver
Grassmannians of tree modules if we make the assumption that all coefficients of the linear maps
Mα are equal to 0 or 1.

12.3. Euler characteristics. Let M be a representation of Q with basis B and coefficient
quiver Γ. We say that the canonical morphism F : Γ→ Q is unramified if it a locally injective
map of the underlying CW-complexes.

Let X be a blue scheme and X =
∐
i∈I Xi a decomposition into connected blue schemes Xi

that satisfy all Hypothesis (H). Then we define

W(X) =
∐
i∈I
W(Xi).

Theorem 12.2. Assume that B is a tree basis for M such that for all α ∈ Q1 the matrix
coefficients of Mα are 0 or 1. Assume further that F : Γ → Q is unramified. Then every
connected component of Gre(M) satisfies Hypothesis (H) and

#W
(
Gre(M)F1

)
= χ

(
Gre(M,C)

)
.

Proof. This proof is based on Cerulli’s trick (see [CI11]). We can define a torus action on
X = Gre(M) as follows. We define a weight function w : B → N such that whenever there are
two arrows

b1
α−→ b′1 and b2

α−→ b′2
in Γ with the same image α in Q, then w(b2)−w(b1) = w(b′2)−w(b′1). Consequently, the number
w(α) = w(b′1)− w(b1) does not depend on the choice of inverse image of α in Γ. We define the
action of T = Gm on Gre(M) by the rule

t.bi = tw(bi) · bi.
Then we have for all vectors v =

∑
albl in Mi and α : i→ j in Q that

Mαt.v = Mα ·
∑

tw(bl)albl = t−w(α)
∑

tw(b
′
l)alb

′
l = t−w(α)Mαv,

which is a scalar multiple of Mαv. Thus for a subrepresentation N of M , the collection t.N of
subspaces of M is still a subrepresentation.

4Usually, one requires Γ to be connected if one refers to tree bases. Since the techniques that we intend to use
in the following do work also for disconnected Γ, we weaken the axioms on a tree basis for our purpose.
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The fix point set XT of this torus action is a closed subvariety of Gre(M). There is a choice of

weight function with sufficiently many different weights such that XT is a proper subvariety of
Gre(M). Since the Euler characteristic is additive in decompositions into locally closed subsets
and multiplicative in fibrations, we have

χ
(
Gre(M,C)

)
= χ(XT ) + χ((X −XT )/T ) · χ(T )︸ ︷︷ ︸

=0

= χ(XT ).

Note that there is not necessarily a choice of weight function such that XT is a finite set of
points. However, we can choose a second, refined weight function for XT that defines a new
torus action on XT with a proper subvariety of fix points. With help of this procedure, we end
up with a finite number of points X0 and the equality

χ
(
Gre(M,C)

)
= #X0.

Since we are scaling basis vectors, subrepresentations N that are spanned by basis vectors
will always be contained in the fix points sets. On the other hand, we have to choose the weights
sufficiently different to exclude all other subrepresentation if we want to end up with a finite
set X0. Therefore X0 corresponds to the subrepresentations N of M with dimN = e that are
spanned by basis vectors.

To see the connection to the Weyl extension W(Gre(M)F1), consider the base extension mor-
phism βX : Gre(M)Z → Gre(M)F1 . Since for a vector v =

∑
albl of Mi with i ∈ Q0

al = < v, bl > 6= 0 if and only if tw(bl) · al = < t.v, bl > 6= 0,

we have that the image βX(T.N) = {βX(N)} of the orbit T.N in Gre(M)F1 consists of one
point. Thus the rank 0-points of Gre(M)F1 correspond precisely to the fix points of the torus
action of T .

By considering the Plücker coordinates of Gre(M), it is easy to see that x is isomorphic to
G0
m,F1

for every rank 0-point x. This shows that every connected component of Gre(M) satisfies

Hypothesis (H) and that the Weyl extension stays in bijection to X0, i.e. #W(Gre(M)F1) =
χ(Gre(M,C)). �

Example 12.3 (A del Pezzo surface of degree 6). Let Q be the quiver

x
t y

z

α

η

γ

of type D4 and M the representation

C2

C3 C2

C2

(
1 0
0 1
0 0

)

(
0 0
1 0
0 1

)

(
1 0
0 0
0 1

)
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of Q. With the obvious choice of basis B, the coefficient quiver Γ is

4
5

1 6
2

3 7
8

9

α
α γ

γ

η
η

where we use numbers 1, . . . , 9 for the elements of B and where we label the arrows by its image
under F .

We consider X as a closed subvariety of Gr(2, 3) × P1 × P1 × P1. Note that for a subrepre-
sentation N of M with dimension vector e, the 1-dimensional subspaces Nx, Ny and Nz of Mx,
My and Mz, respectively, determine the 2-dimensional subspace Nt of Mt uniquely. The images
of Nx = 〈

(
x0
x1

)
〉, Ny = 〈

(
y0
y1

)
〉 and Nz = 〈

(
z0
z1

)
〉 in Mt lie in a plane if and only if

det

[
x0 y0 0
x1 0 z0
0 y1 z1

]
= −x0 y1 z0 − x1 y0 z1 = 0.

Therefore the projection Gr(2, 3)× P1 × P1 × P1 → P1 × P1 × P1 yields an isomorphism

Gre(M)
∼−→

{
[x0 : x1 | y0 : y1 | z0 : z1 ] ∈ P1 × P1 × P1

∣∣ x0 y1 z0 + x1 y0 z1 = 0
}
.

Since there is no point in Gre(M) for that all derivatives of the defining equation vanish, Gre(M)
is smooth.

The projection π1,3 : P1 × P1 × P1 → P1 × P1 to the first and third coordinate restricts to a
surjective morphism π1,3 : Gre(M) → P1 × P1. It is bijective outside the fibres of [1 : 0|0 : 1]
and [0 : 1|1 : 0], and these two fibres are

π−11,3

(
[ 1 : 0 | 0 : 1 ]

)
=

{
[ 1 : 0 | y0 : y1 | 0 : 1 ]

}
' P1

and
π−11,3

(
[ 0 : 1 | 1 : 0 ]

)
=

{
[ 0 : 1 | y0 : y1 | 1 : 0 ]

}
' P1.

This hsows that Gre(M)C is a del-Pezzo surface of degree 6.
By the method of the proof of Theorem 12.2, we see that the elements of W(Gre(M)F1

correspond to the six points

[ 1 : 0 | 1 : 0 | 1 : 0 ], [ 0 : 1 | 1 : 0 | 1 : 0 ], [ 0 : 1 | 0 : 1 | 1 : 0 ],

[ 0 : 1 | 0 : 1 | 0 : 1 ], [ 1 : 0 | 0 : 1 | 0 : 1 ], [ 1 : 0 | 1 : 0 | 0 : 1 ].

in P1 × P1 × P1. These points correspond to the elements of the Weyl extension of Gre(M)F1

and we have
#W

(
Gre(M)F1

)
= χ

(
Gre(M,C)

)
.

These six points show some more particular behaviours. Namely, they are precisely the
intersection points of pairs of the six −1-curves on the del Pezzo surface of degree six. The
subrepresentations of M corresponding to these six points, considered as C-rational points of
Gre(M), are precisely those subrepresentations of M that decompose into a direct sum of two
non-trivial smaller representations.
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2012.
[Lor13] Oliver Lorscheid. A blueprinted view on F1-geometry. To appear in the ECM monograph Absolute

arithmetic and F1-geometry, arXiv:1301.0083, 2013.
[LPL11] Javier López Peña and Oliver Lorscheid. Torified varieties and their geometries over F1. Math. Z., 267(3-

4):605–643, 2011.
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pages 261–289. Établissements Ceuterick, Louvain, 1957.
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