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Gaal, Sebastian Holwitt, Aiva Misevičiūtė Albert Silvans, Lars Wieringa, and Thomas
Zwartveld. Special thanks go to Anna and Thomas for organizing the proof-reading and
to Aiva and Margherita for the beautiful illustrations.



Contents

Contents 3

Introduction 5

0 Preliminaries 7
0.1 The complex numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
0.2 Polar coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
0.3 Sequences and series . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
0.4 Open and closed subsets . . . . . . . . . . . . . . . . . . . . . . . . . 11
0.5 Continuous functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
0.6 Connected subsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
0.7 Compact subsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
0.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1 Holomorphic functions 15
1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2 The Cauchy-Riemann equations . . . . . . . . . . . . . . . . . . . . . 17
1.3 Power series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4 The logarithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Path integrals 29
2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2 Path integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3 Goursat’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4 Primitives on discs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.5 Integrals along continuous paths . . . . . . . . . . . . . . . . . . . . . 38
2.6 Homotopies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.7 Cauchy’s integral theorem . . . . . . . . . . . . . . . . . . . . . . . . 44
2.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 Analytic functions 49
3.1 Cauchy’s integral formula . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2 The maximum modulus principle . . . . . . . . . . . . . . . . . . . . . 51
3.3 Analytic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4 Holomorphic functions are analytic . . . . . . . . . . . . . . . . . . . . 54

3



4 Contents

3.5 Liouville’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.6 The fundamental theorem of algebra . . . . . . . . . . . . . . . . . . . 58
3.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Residues 61
4.1 Singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Laurent expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3 Residues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.4 The residue theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.5 The argument principle . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.6 Rouché’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.7 The open mapping principle . . . . . . . . . . . . . . . . . . . . . . . 79
4.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Further topics 83
5.1 Analytic continuation . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87



Introduction

Complex Analysis is the theory of complex differentiable functions from regions of the
complex plane to the complex plane itself. In contrast to the formal similarity with real
differentiable functions, it turns out that complex differentiability is a stronger condition
that leads to a theory of extreme elegance and beauty.

Let us compare the world of real valued functions f : U → R and complex valued
functions f : U → C (where U is an open subset of R in the former case and of C in the
latter case) in the following table.

real valued functions complex valued functions
continuous continuous
differentiable holomorphic (complex diff’ble)

C1 (cont. diff’ble)
...

C2 ...
...

...

C∞ (smooth)
...

analytic analytic

While all classes of real valued functions (on the left hand side of the table) are
properly contained in each other, holomorphic functions fulfill the following central
result (which appears as Theorem 3.4.4 in the main text).

Theorem. Every holomorphic function is analytic.

The main technique of proof are path integrals of holomorphic functions:

Two corner stones towards the proof of the above theorem are the following (cf.
Theorem 2.7.4 and Theorem 3.1.1 for the concise formulations).
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6 Contents

Theorem (Cauchy’s integral theorem). The path integral
∫
γ f is homotopy invariant.

Theorem (Cauchy’s integral formula). For a circular path γ around z (as below),

f (z) =
1

2πi
·
∫
γ

f (w)
w− z

dw.

These results pave the way to the identification of a path integral with an elementary
expression in terms of easily computable numbers: the winding number W (γ,c) of a
closed path around a singularity c and the residue Resc( f ) of f at a singularity c (cf.
Theorem 4.4.4 for a concise formulation).

Theorem (Cauchy’s residue theorem). Let f be a holomorphic function and S the set of
isolated singularities of f . Then∫

γ

f = 2πi · ∑
c∈S

W (γ,c) ·Resc( f ).

Besides the aforementioned concepts and techniques, we learn in this course about:

• the Cauchy-Riemann equations (and the relation between holomorphic and har-
monic functions);

• analytic extensions of the exponential function and trigonometric functions;
branches of the logarithm;

• Taylor and Laurent expansions;

• types of singularities: removable singularities, poles and essential singularities.

We apply the methods and results of the course to establish the following results:

• Liouville’s theorem;

• the fundamental theorem of algebra;

• the mean value theorem and the maximum modulus principle;

• Rouche’s theorem;

• the open mapping principle;

• the inverse function theorem.



Chapter 1

Preliminaries

In this chapter, we revise knowledge from previous courses that we need for this course
in Complex Analysis.

1.1 The complex numbers
Let R be the real numbers. The complex numbers are the set C= R2 together with the
vector addition (

x
y

)
+

(
x′

y′

)
=

(
x+ x′

y+ y′

)
and the multiplication (

x
y

)
·
(

x′

y′

)
=

(
xx′− yy′

xy′+ x′y

)
which turn C into a field. In particular, the additive neutral element of C is

(0
0

)
and

the multiplicative unit is
(1

0

)
. The additive inverse of

(x
y

)
is −

(x
y

)
=
(−x
−y

)
and the

multiplicative inverse of a nonzero element
(x

y

)
is

(
x
y

)−1

=
1

x2 + y2 ·
(

x
−y

)
.

We denote by C× = C\{0} the unit group of C.
The real part of a complex number

(x
y

)
is Re

(x
y

)
= x and its imaginary part is

Im
(x

y

)
= y. We call {

(x
0

)
| x ∈R} the real axis of C and {

(0
y

)
| y ∈R} its imaginary axis.

Note that the real axis forms a subfield of C that is isomorphic to R. In the following,
we identify R with the real axis and write x for

(x
0

)
.

The imaginary unit is the element i =
(0

1

)
, which satisfies i2 =

(−1
0

)
=−1, i.e. i is a

square root of −1. This allows us to rewrite a complex number
(x

y

)
as(

x
y

)
=

(
x
0

)
+ i ·

(
y
0

)
= x+ iy.
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8 Preliminaries

In this notation, the previous formulas for the sum, product and inverse of complex
numbers z = x+ iy and z′ = x′+ iy′ can be rewritten as

z+ z′ = (x+ x′)+ i(y+ y′),
z · z′ = (xx′− yy′)+ i(xy′+ x′y),

z−1 =
x− iy

x2 + y2 .

The complex conjugate of z = x+ iy is z̄ = x− iy. The absolute value of z = x+ iy is

|z| =
√

z · z̄ =
√

x2 + y2.

Thus we have z−1 = z̄/|z|2.
We typically illustrate C= R2 as a plane with 1 pointing to the right and i pointing

upwards. Complex conjugation corresponds to the reflection in the x-axis.

Figure 1.1: Complex conjugation as the reflection in the x-axis

1.2 Polar coordinates
Let R>0 = {x ∈ R | x> 0} be the set of positive real numbers and R/2πZ the quotient
of the additive group of R by the subgroup 2πZ. The map

Φ : R>0× (R/2πZ) −→ C×
(r,ϕ) 7−→ r(cosϕ+ isinϕ)

is a bijection whose inverse sends z∈C× to Ψ(z)= (|z|,argz) where argz is the argument
of z;1 this is, up to multiples of 360 degrees (i.e. 2π radians), the angle between the
positive real axis and the halfline spanned by z in counterclockwise direction. The tuple
(|z|,argz) is called the polar coordinates of z.

1Note that we consider the argument as a function to R/2πZ, i.e. the argument is only well-defined
up to integers multiples of 2π. This allows us to add angles without further explanations, in contrast to the
so-called principal argument, which takes values in (−π,π].
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Figure 1.2: Argument of z

We can express several formulas in polar coordinates:

Ψ(z · z′) = (|z| · |z′|, argz+ argz′),

Ψ(z−1) = (|z|−1,−argz),
Ψ(z̄) = (|z|,−argz).

In particular, the multiplication with a complex number z of absolute value |z|= 1 is a
counter-clockwise rotation of C= R2 by the angle 360

2π · argz around 0.

Figure 1.3: A picture of a bear and its image after multiplication by z =−1

1.3 Sequences and series
A sequence in C is an indexed family {zn}n∈N of complex numbers zn ∈ C. A limit
of a sequence {zn}n∈N is a complex number z ∈ C such that for all ε > 0, there is an
N ∈N such that |zk−z|< ε for all k>N. A sequence {zn}n∈N converges if a limit exists.
Otherwise it is said to diverge. We write

z = lim
n→∞

zn or zn −→
n→∞

z

to indicate that z is a limit of {zn}n∈N. A Cauchy sequence in C is a sequence {zn}n∈N in
C such that for all ε> 0, there is an N ∈N such that for all k, l >N, we have |zk−zl|< ε.
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Figure 1.4: Convergence of a Cauchy sequence

Fact 1.3.1. Let {zn}n∈N be a sequence in C.

(1) Limits are unique, i.e. {zn}n∈N has at most one limit.

(2) The sequence {zn}n∈N has a limit if and only if it is a Cauchy sequence.

A series in C is an expression of the form ∑
∞
i=0 zn for complex numbers zn ∈ C. The

partial sums of ∑
∞
i=0 zi are the sums Sn = ∑

n
i=0 zi. The series ∑

∞
i=0 zi converges (to z)

if the sequence {Sn}m∈N converges (to z). The series ∑
∞
i=0 zi converges absolutely if

∑
∞
i=0 |zi| converges as a series in R.

Fact 1.3.2. A series in C converges if it converges absolutely.

Definition 1.3.3. Let {ai}i∈N be a sequence of real numbers ai. The superior limit of
{ai} is

limsupai = lim
n→∞

(
sup{ai | i> n}

)
which we interpret as ∞ if sup{ai | i> n}= ∞ for all n and as −∞ if sup{ai | i> n} has
no lower bound.

Note that the superior limit always exists since sup{ai | i > n} is a monotonically
decreasing sequence in n. If {ai} converges, then limsup{ai}= lim{ai}.

Fact 1.3.4. Let {ai} and {bi} be sequences with superior limits in R. Then

limsupai ± limsupbi = limsup(ai±bi)

and

limsupai · limsupbi = limsup(ai ·bi).

If ai 6= 0 for all i ∈ N and limsupai 6= 0, then

limsup(a−1
i ) = (limsupai)

−1.



1.4. Open and closed subsets 11

Figure 1.5: Limit superior and limit inferior

1.4 Open and closed subsets
We are mostly concerned with the topology of C = R2, but at times, we also apply
topological properties to R=R1. Therefore we revise the following topological concepts
and facts in the generality of Rn for n> 0.

The Euclidean norm of a vector x = (x1, . . . ,xn) in Rn is

||x|| =
√

x2
1 + . . .+ x2

n.

For x ∈ R = R1, the Euclidean norm is equal to the usual Euclidean absolute value
||x||= |x|. For z ∈ C= R2, the Euclidean norm is equal to the complex absolute value
||z||= |z|.

Let r > 0 and a ∈ Rn. The open ball of radius r and with center a is the set

Br(a) = {x ∈ Rn | ||x−a||< r}.

In R= R1, the open ball Br(a) is the open interval (a− r, a+ r). In C= R2, the open
ball Br(a) is the open disc Dr(a) = {z ∈ C | |z−a|< r}.

A subset U of Rn is open if for every a ∈U , there is an ε> 0 such that Bε(a)⊂U .
In other words, U is open if and only if it is the union of open discs. A subset A of Rn is
closed if Rn \A is open.

Fact 1.4.1. A subset A of Rn is closed if and only if every Cauchy sequence {zn}n∈N in
A has a limit z = limzn in A.

The interior of a subset W of Rn is

W ◦ =
⋃

U⊂W
open

U = {x ∈W | Bε(w)⊂W for some ε> 0},

which is the largest open subset of W . The closure of W is

W =
⋂

W⊂A
closed

A = {w ∈ Rn | w = limzn for {zn}n∈N ⊂W},



12 Preliminaries

which is the smallest closed subset of Rm that contains W . A subset W ⊂ Rn is dense in
Rn if W = Rn. The boundary of W is the difference ∂W =W \W ◦ between the closure
and the interior of W . In particular, we have

W ◦ = W \∂W and W = W ∪∂W.

A subset V of W is open in W if it is of the form V =U ∩W for an open subset U of
Rn. This topology for W is called the induced topology or the subspace topology.

1.5 Continuous functions
Let W be a subset of Rn. A function f : W → Rm has a limit a ∈ Rm in w ∈W if for
every ε> 0, there is a δ > 0 such that f (Bδ(w)∩W )⊂ Bε(a). We write

a = lim
z→w

f (z) or f (z) −→
z→w

a

in this case. Note that the limit limz→w f (z) of f in w is unique if it exists.

Fact 1.5.1. Let f ,g : W →Rm be two functions for which the limit in w∈W exists. Then

lim
z→w

( f ±g)(z) = lim
z→w

f (z)± lim
z→w

g(z)

and
lim
z→w

( f ·g)(z) = lim
z→w

f (z) · lim
z→w

g(z).

If limz→w f (z) 6= 0, then

lim
z→w

1/ f (z) =
(

lim
z→w

f (z)
)−1

.

The function f : W → Rm is continuous if f (w) = limz→w f (z) for every w ∈W .

Fact 1.5.2. Let W ⊂Rn be a subset and f : W → Rm a function. Then the following are
equivalent:

(1) The function f is continuous.

(2) For every open subset U in Rm, the inverse image f−1(U) is open in W.

(3) For every sequence {zn}n∈N in W with limit z ∈W, the image f (z) is a limit of
{ f (zn)}n∈N.
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1.6 Connected subsets
A subset W of Rn is connected if it is not contained in the disjoint union U1tU2 of two
open subsets U1 and U2 of Rn that do neither contain W . A path in W is a continuous
map γ : I→W from the unit interval I = [0,1] to W . A subset W of Rn is path connected
if for all x,y ∈W , there is a path γ : I→W such that γ(0) = x and γ(1) = y.

Fact 1.6.1. Every path-connected subset W of Rn is connected. If W is open, then W is
connected if and only if it is path-connected.

1.7 Compact subsets
A subset W of Rn is bounded if there is an r > 0 such that W ⊂ Br(0). A subset A of Rn

is compact if it is closed and bounded. For example, a subset of R=R1 is compact if and
only if it is a finite union of closed intervals. The closed disc Dr(a)= {z∈C | |z−a|6 r}
of radius r and with center a ∈ C is a compact subset of C.

Theorem 1.7.1 (Heine-Borel and Bolzano-Weierstrass). Let A be a subset of Rn. The
following are equivalent:

(1) A is compact.

(2) If A⊂
⋃

i∈I Ui for open subsets Ui of Rn, then there exists a finite subset J of I such
that A⊂

⋃
i∈J Ui.

(3) For every sequence {zn}n∈N in A, there is an order-preserving injection σ : N→N
such that {zσ(n)}n∈N has a limit in A.

Lemma 1.7.2. Let A⊂ Rn be a compact subset and f : A→ Rm a continuous function.
Then f (A) is a compact subset of Rm. In particular, if A ⊂ C is compact, then every
continuous function f : A→ R assumes its maximum, i.e. there is an a ∈ A such that
f (z)6 f (a) for all z ∈ A.

Lemma 1.7.3 (Lebesgue’s Lemma). Let A⊂ Rn be a compact subset that is contained
in the union

⋃
i∈I Ui of open subsets Ui of Rn. Then there is a δ > 0 such that for every

a ∈ A, there is an i ∈ I such that Bδ(a)⊂Ui.
In particular, if [0,1]n =

⋃
i∈I Ui for open subsets Ui of [0,1]n (in the subset topology

for [0,1]n), then there is an N > 0 such that for all k1, . . . ,kn ∈ {1, . . . ,N}, there is an
i ∈ I such that [

k1−1
N

,
k1

N

]
×·· ·×

[
kn−1

N
,

kn

N

]
⊂ Ui.

1.8 Exercises
Exercise 1.8.1. Verify all formulas of section 0.1 and section 0.2.

Exercise 1.8.2. Show that limn→∞(n+1)1/n = 1, which can be done as follows:
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(1) For an integer n> 1, show that n+16
(
1+
√

2/(n+1)
)n by comparing n+1

with the binomial expansion of the right hand side.

(2) Use this together with 1 6 (n+ 1)1/n and lim1+
√

2/(n+1) = 1 to conclude
that lim(n+1)1/n = 1.

Exercise 1.8.3. Let z ∈ C have |z|< 1. Show that the partial sum Sn = ∑
n
i=0 zi equals

(zn+1−1)/(z−1) and conclude that the series ∑
∞
i=0 zi converges absolutely to (1− z)−1.

Exercise 1.8.4 (Warsow curve). Consider the following subset of R2:

X = {(x,sin(1
x ) | x> 0} ∪ {(0,y) | −16 y6 1}.

Show that X is closed and connected. Show that X is not path-connected.

Exercise 1.8.5. Let f : X→Y be a continuous map, X compact and Z ⊂ X closed. Prove
that both Z and f (X) are compact.

Exercise 1.8.6. Show that X is connected if and only if there is no continuous surjection
X →{0,1} with respect to the discrete topology for {0,1} (i.e. every subset is open).

Exercise 1.8.7. Prove all facts in this chapter.



Chapter 2

Holomorphic functions

2.1 Definitions
Definition 2.1.1. Let U and V be open subsets of C and a ∈U . A function f : U →V
is complex differentiable in a if

f ′(a) = lim
z→a

f (z)− f (a)
z−a

exists. A function f : U →V is holomorphic if it is complex differentiable in all a ∈U .
An entire function is a holomorphic function f : C→ C.

Mostly the codomain V plays a subordinate role and it does not matter if we replace
V by C, or vice versa. Therefore we consider f : U → C often as a function in C.
In some situations, it is however important to work with proper subsets V of C as a
codomain, such as in Theorem 1.2.5.

Remark 2.1.2. A function f : U → C is complex differentiable in a ∈U if and only if
there is a w ∈ C such that

f (z)− f (a)−w · (z−a)
|z−a|

−→
z→a

0.

In this case f ′(a) = w.
Note further that if f ′(a) exists, then

lim
z→a

(
f (z)− f (a)

)
= f ′(a) · lim

z→a
(z−a) = 0,

which shows that f is continuous in a.

Proposition 2.1.3. Let U ⊂ C be an open subset, a ∈U, c ∈ C and f ,g : U → C two
functions that are complex differentiable in a. Then

(1) ( f ±g)′(a) = f ′(a)±g′(a);

15



16 Holomorphic functions

(2) (c · f )′(a) = c · f ′(a);

(3) ( f ·g)′(a) = f ′(a) ·g(a)+ f (a) ·g′(a); (Leibniz rule)

(4) (1/ f )′(a) =− f ′(a)/( f (a))2 if f (a) 6= 0.

(5) If V ⊂C is an open subset with f (U)⊆V and h : V →C is complex differentiable
in f (a), then (h◦ f )′(a) = h′( f (a)) · f ′(a). (Chain rule)

Proof. We only prove the most difficult case (5) and leave (1)–(4) as an exercise. The
chain rule follows from the direct computation

lim
z→a

(h◦ f )(z)− (h◦ f )(a)
z−a

= lim
z→a

(h◦ f )(z)− (h◦ f )(a)
f (z)− f (a)

· lim
z→a

f (z)− f (a)
z−a

= h′( f (a)) · f ′(a),

where we use that limits interchange with products (Fact 0.5.1) for the first equality.
For the second equality, we use that f is continuous in a and thus f (z)→ f (a) when
z→ a.

Example 2.1.4. (1) Let n> 0. Then the function

f : C −→ C
z 7−→ zn

is entire with derivative f ′(z) = nzn−1. (We leave the verification of this claim as
an exercise.)

(2) Let n< 0 and C× = C\{0}. Then the function

f : C× −→ C
z 7−→ zn

is entire with derivative f ′(z) = nzn−1. (We leave the verification of this claim as
an exercise.)

(3) A polynomial function is a function f : C→ C of the form f (z) = ∑
d
n=0 cnzn

for some c0, . . . ,cd ∈ C. A polynomial function is entire with derivative f ′(z) =
∑

d−1
n=0(n+1)cn+1zn.

(4) Let f ,g : U → C be holomorphic and assume that g(z) 6= 0 for z ∈ U . Then
f
g : U → C is holomorphic with derivative

(
f
g

)′
(z) =

f ′g− f g′

g2 (z).

A rational function is a function of the form f
g : U → C for two polynomial

functions f and g.
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2.2 The Cauchy-Riemann equations
In this section, we investigate how complex differentiability relates to real differentiabil-
ity. For this, we recall the concept of differentiability in two real variables.

Recall that x+ iy =
(x

y

)
under the identification C = R2. Let U ⊂ C be an open

subset and f : U → C a function. Then there exist unique functions u,v : U → R such
that

f (x+ iy) = u(x,y)+ iv(x,y)

for all x,y ∈ R; namely

u(x,y) = Re( f (x+ iy)) and v(x,y) = Im( f (x+ iy)).

We write f = u+ iv for short to express these relations.

Definition 2.2.1. Let a =
(b

c

)
∈U . The function f : U → R2 is (real) differentiable in a

if there is a real 2×2-matrix J f (a) such that

lim
(x

y)→(
b
c)

(
f (x,y)− f (b,c)− J f (a) ·

((x
y

)
−
(b

c

)))
||
(x

y

)
−
(b

c

)
||

=

(
0
0

)
.

The function f : U → R2 is differentiable if it is differentiable in all a ∈U .

The matrix J f is unique if it exists, and it is called the Jacobian matrix of f . Its
coefficients are denoted as follows:

J f (a) =

(
∂u
∂x (a)

∂u
∂y (a)

∂v
∂x(a)

∂v
∂y(a)

)
=

(
ux(a) uy(a)

vx(a) vy(a)

)
.

The key lemma to relate complex and real differentiation is the following.

Lemma 2.2.2. Let A be a real 2×2-matrix and w = r+ is ∈ C. Then wz = A ·
(x

y

)
for

all z = x+ iy ∈ C if and only if A =
(

r −s
s r
)
.

Proof. The computation

wz = (r+ is) · (x+ iy) = (rx− sy)+ i(ry+ sx) =
(rx−sy

ry+sx

)
=
(

r −s
s r
)(x

y

)
shows that z 7→ wz is an R-linear map R2 → R2 that corresponds to the (uniquely
determined) matrix A =

(
r −s
s r
)
.

Theorem 2.2.3. Let U ⊂ C be an open subset and f = u+ iv : U → C a function. Then
f is holomorphic if and only if f is differentiable and if the Cauchy-Riemann equations
hold:

ux = vy and uy = −vx.

If f is holomorphic, then f ′(a) = ux(a)+ ivx(a) for all a ∈U.
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Proof. Let a =
(b

c

)
∈U . The function f is complex differentiable in a if and only if

f (z)− f (a)− f ′(a) · (z−a)
|z−a|

−→
z→a

0

with f ′(a) = r+ is for some r,s ∈ R. By Lemma 1.2.2, this is equivalent to

f (x,y)− f (b,c)−J f (a)·((x
y)−(

b
c))

||(x
y)−(

b
c)||

−→
(x

y)→(
b
c)

0

with J f (a) =
(

r −s
s r
)

for some r,s ∈ R.
By the definition of the partial differentials ux, uy, vx and vy, we have r = ux(a) =

vy(a) and s =−ux(a) = vy(a). Thus f is holomorphic if and only if f is (real) differen-
tiable and if the Cauchy-Riemann equations ux = vy and uy =−vx hold.

Example 2.2.4. (1) The function

f : C −→ C
z 7−→ z2

satisfies

f (x+ iy) = (x+ iy)2 = (x2− y2)+ i(2xy) = u(x,y)+ iv(x,y)

for u(x,y) = x2− y2 and v(x,y) = 2xy, which satisfy Cauchy-Riemann equations:

ux = 2x = vy and uy = −2y = −vx.

This re-establishes that z 7→ z2 is an entire function.

(2) The complex conjugation
f : C −→ C

z 7−→ z̄

satisfies
f (x+ iy) = x− iy = u(x,y)+ iv(x,y)

for u(x,y) = x and v(x,y) =−y. Since ux = 1 6=−1 = vy, the complex conjugation
is not holomorphic.

Theorem 2.2.5 (Inverse function theorem). Let U and V be open subsets of C and
f : U →V a holomorphic bijection with inverse bijection g : V →U. If g is continuous
and if f ′(a) 6= 0 for all a ∈U, then g is holomorphic with derivative

g′(b) =
1

f ′(g(b))

for all b ∈V .
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Proof. Consider w,b ∈V with images z = g(w) and a = g(b). Since both f and g are
continuous, w converges to b if and only if z converges to a (where we consider w and z
as variables). Since f ′(a) 6= 0, we can exchange the limit with (−)−1 (Fact 0.5.1), which
yields

g′(b) = lim
w→b

g(w)−g(b)
w−b

= lim
z→a

z−a
f (z)− f (a)

=

(
lim
z→a

f (z)− f (a)
z−a

)−1

=
1

f ′(a)
=

1
f ′(g(b))

.

This shows, in particular, that g is complex differentiable in b.

Remark 2.2.6. The assumption that g is continuous is not necessary for Theorem 1.2.5
to hold. This can be seen by applying the implicit function theorem of (real) multivariate
analysis, which shows that g is (real) differentiable and therefore continuous. We will
show this later on with an argument from complex analysis.

2.3 Power series
Definition 2.3.1. A (complex) power series is an expression of the form

∞

∑
n=0

anzn

with a0,a1, . . . ∈ C. When the context is clear, we write ∑anzn for short.

In the following we investigate the question for which z ∈C such a power series con-
verges and write ∑anzn = f (z) if ∑anzn converges to f (z) (where f (z) is an expression
in z). Subsequently, we show that power series define holomorphic functions whenever
they converge on an open disc of the form Dr(a) = {z ∈ C | |z−a|< r}.

Lemma 2.3.2. The geometric series ∑zn converges absolutely
∞

∑
n=0

zn =
1

1− z

for all z ∈ D1(0).

Proof. Consider the partial sums

Sn =
n

∑
i=1
|zi| = 1−|z|n+1

1−|z|

of absolute values where the identity on the left hand side results from multiplying both
sides by 1−|z|. For z ∈ D1(0), we have limn→∞ |z|n+1 = 0. Thus

∞

∑
n=0
|z|n = lim

n→∞
Sn = lim

n→∞

1−|z|n+1

1−|z|
=

1
1−|z|

converges. In other words, ∑zn converges absolutely for z ∈ D1(0). The same computa-
tion with |z| replaced by z shows that ∑zn converges to 1

1−z for z ∈ D1(0).
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As a consequence, we see that the power series ∑
∞
n=0 anzn defines a holomorphic

function f : D1(0)→C. In fact, 1
1−z extends to a holomorphic function f : C\{1}→C,

which is a first example for analytic continuation, which we discuss in a later section, cf.
Definition 4.1.1 and section 5.1.

Definition 2.3.3. The radius of convergence of a power series ∑anzn is

R =
1

limsup |an|1/n

where we define 1
0 = ∞ and 1

∞
= 0.

Theorem 2.3.4 (Cauchy-Hadamard). Let ∑anzn be a power series with radius of con-
vergence R. Then ∑anzn converges absolutely if |z|< R and it diverges if |z|> R.

Proof. Let L = limsup |an|1/n = 1
R . Assume that |z|< R or, equivalently, that L · |z|<

1. Then there is an ε > 0 such that q = (L+ ε) · |z| < 1. By the definition of L =
limsup |an|1/n, there is an N > 0 such that |an|1/n 6 L+ ε for all n> N. Thus

∞

∑
n=0
|an| · |z|n 6 C+

∞

∑
n=0

(
(L+ ε) · |z|

)n
= C+

∞

∑
n=0

qn

for some sufficiently large C ∈R. Since q< 1, Lemma 1.3.2 implies that ∑qn converges,
which shows that ∑anzn converges absolutely for |z|< R.

Assume that |z| > R or, equivalently, that L · |z| > 1. It suffices to show that the
sequence of partial sums Sn = ∑

n
n=0 anzn is not a Cauchy sequence, in order to show that

∑anzn converges. First note that there is an ε> 0 such that q = (L− ε) · |z|> 1. By the
definition of L = limsup |an|1/n, there are infinitely many n∈N such that |an|1/n > L−ε.
For such n, we have

|Sn−Sn−1| = |anzn| >
(
(L− ε) · |z|

)n
= qn,

which does not tend to 0 for increasing n. This shows that {Sn} is not a Cauchy sequence
and that ∑anzn diverges.

Remark 2.3.5. For |z|= R, it depends on the series and the specific z whether ∑anzn

converges or diverges.

Example 2.3.6. (1) The exponential series

ez =
∞

∑
n=0

1
n!

zn

has radius of convergence

R =
1

limsup | 1
n! |1/n

=
1
1
∞

= ∞

since
|n!|1/n >

(
(n

2)
n/2)1/n

=
√

n
2 −→n→∞

∞.

This defines the exponential function exp : C→ C with exp(z) = ez, where we
use the notation exp(z) and ez interchangeably.
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(2) Both

cosz = ∑
n∈N even

in

n!
zn and sinz = ∑

n∈N odd

in−1

n!
zn

have radius of convergence R = ∞ and thus define functions cos : C→ C and
sin : C→ C.

Theorem 2.3.7. Let ∑anzn be a power series with radius of convergence R. Then the
function

f : DR(0) −→ C
z 7−→ ∑ anzn

is holomorphic with derivative

f ′(z) =
∞

∑
n=0

(n+1) ·an+1zn,

which is a power series with the same radius of convergence R.

Proof. For the sake of this proof, let g(z) = ∑
∞
n=0(n+1) ·an+1zn. Using m = n+1 and

Exercise 0.8.2, we have

limsup |m ·am|1/(m−1) = limsupm1/(m−1)︸ ︷︷ ︸
=1

· limsup
(
|am|

1
m
)m/(m−1)

= limsup |am|1/m =
1
R
,

which shows that the radius of convergence of the power series ∑(n+1) ·an+1zn is equal
to that of ∑anzn, which defines g as a function from DR(0) to C.

In order to prove that ∑anzn is holomorphic on DR(0) with derivative f ′(z) = g(z),
we divide the power series into its partial sum and its “tail”

SN(z) =
N

∑
n=0

anzn and EN(z) =
∞

∑
n=N+1

anzn,

respectively. Consider a fixed element z ∈ DR(0) and |z| < r < R. For an element
h ∈ Dr−|z|(0)\{0}, we compute

f (z+h)− f (z)
h

−g(z)

=

(
SN(z+h)−SN(z)

h
−S′N(z)

)
+

(
S′N(z)−g(z)

)
+

(
EN(z+h)−EN(z)

h

)
We have

SN(z+h)−SN(z)
h

−S′N(z) −→
h→0

0,
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by definition of the derivative S′N(z), and

S′N(z)−g(z) = −
∞

∑
n=N+1

(n+1) ·an+1zn −→
N→∞

0.

Since an−bn = (a−b) ·∑n−1
i=0 aibn−1−i for a = z+h and b = z, we have for small h (for

which |z|< r and |z+h|< r):∣∣∣∣EN(z+h)−EN(z)
h

∣∣∣∣ = 1
|h|
·
∣∣∣∣ ∞

∑
n=N+1

an ·
(
(z+h)n− zn)∣∣∣∣

=
1
|h|
·
∣∣∣∣ ∞

∑
n=N+1

an · (z+h− z) ·
n−1

∑
i=0

(z+h)izn−1−i
∣∣∣∣

6
1
|h|
·

∞

∑
n=N+1

|an| · |z+h− z| ·
∣∣∣∣n−1

∑
i=0

(z+h)izn−1−i
∣∣∣∣

6

∣∣∣∣hh
∣∣∣∣ · ∞

∑
n=N+1

|an| ·
n−1

∑
i=0

∣∣(z+h)izn−1−i∣∣
6

∞

∑
n=N+1

|an| ·n · rn−1,

which tends to 0 as N→ ∞. Thus

lim
h→0

∣∣∣∣ f (z+h)− f (z)
h

−g(z)
∣∣∣∣ 6 ∣∣S′N(z)−g(z)

∣∣ + ∞

∑
n=N+1

|an| ·n · rn−1 −→
N→∞

0,

which shows that

g(z) = lim
h→0

f (z+h)− f (z)
h

is the differential f ′(z) of f in z. This shows, in particular, that f is holomorphic as a
function in DR(z).

As an immediate consequence, we have:

Corollary 2.3.8. The functions exp, cos and sin are entire.

Proposition 2.3.9. Consider two power series f (z) = ∑anzn and g(z) = ∑bnzn that are
absolutely convergent on Dr(0) with r > 0 (possibly r = ∞) and let c ∈ C. Then

( f ±g)(z) =
∞

∑
n=0

(an±bn)zn;

(c · f )(z) =
∞

∑
n=0

(c ·an)zn;

( f ·g)(z) =
∞

∑
n=0

( n

∑
i=0

aibn−i

)
zn (Cauchy product)

for all z ∈ Dr(0). In particular, all power series converge absolutely for z ∈ Dr(0).
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Proof. All three formulas follow by proving them for the partial sums of the correspond-
ing power series and then letting the number of terms in the partial sums go to infinity.
Since the limit of the partial sums converges, the power series in these equations have
radius of convergence R > r and thus converge absolutely for z ∈ Dr(0). We omit the
details.

Corollary 2.3.10. For all complex numbers z = x+ iy and w, we have

(1) exp′(z) = exp(z) (4) eiz = cosz+ isinz (7) cosz = 1
2(e

iz + e−iz)

(2) sin′(z) = cos(z) (5) ez = ex(cosy+ isiny) (8) sinz = 1
2i(e

iz− e−iz)

(3) cos′(z) =−sin(z) (6) ez+w = ez · ew (9) z = |z| · eiargz

The proof of these identifies follow from a direct manipulation of the corresponding
power series, which is left as an exercise. The identity eiz = cosz+ isinz is known as
Euler’s formula.

2.4 The logarithm
The real exponential function exp : R→ R>0 is a bijection with inverse log : R>0→ R.
In this section, we investigate the corresponding behaviour of the complex exponential
function exp : C→ C.

As a first observation, we compute for z = x+ iy ∈ C that

ez = ex︸︷︷︸
∈R>0

·
(

cosy+ isiny)︸ ︷︷ ︸
∈S1

∈ C×

where S1 = {z ∈ C | |z|= 1} is the unit sphere. Therefore the image of exp : C→ C is
C× = R>0×S1.

If w ∈ C× has polar coordinates (|w|,argw) with |w| ∈ R>0 and argw ∈ R/2πZ,
then

exp−1(w) =
{

x+ iy ∈ C
∣∣x = log |w|, y ∈ argw+2πZ

}
.
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In particular, exp−1(1) = 2πiZ. This shows that exp : C→ C× is not injective, in
contrast to exp : R→ R>0.

Figure 2.1: Enter Caption

Idea: restrict exp to a bijection between subsets of the forms

Hα = {z ∈ C | Im(z) ∈ (α,α+2π)} and Uϑ = C× \{λ ·ϑ | λ> 0}

for α ∈ R and ϑ= eiα ∈ S1.

Definition 2.4.1. The α-branch of the logarithm is the inverse logα : Uϑ → Hα to
the bijection exp : Hα → Uϑ for α ∈ R and ϑ = eiα. The principal branch of log is
log = log−π : U−1→H−π.

Proposition 2.4.2. Let α∈R and ϑ= eiα. The function logα :Uϑ→Hα is holomorphic
with derivative

log′α(z) =
1
z
.

Proof. As a first step, we show that logα is continuous, i.e., for every a ∈Uϑ with image
b = logα(a) and for every ε> 0 there is a δ > 0 such that

logα
(
Dδ(a)∩Uϑ

)
⊂ Dε(b).
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After making ε and δ suitably small, we can assume that Dδ(a)⊂ Uϑ and that Dε(b)⊂
Hα. Since exp◦ logα is the identity on Dδ(a), the above inclusion follows from the
inclusion Dδ(a) ⊂ exp(Dε(b)) of the respective images under exp. Let Q be a small
square around b contained in Dε(b). Then the horizontal boundary lines of the square
are mapped to straight lines that lie on rays originating from the origin of C, and the
vertical boundary lines of the square lie on circles around the origin. This makes clear
that exp(Q) is a deformed square that contains a in its interior (as illustrated below) and
thus also an open disc Dδ(a) for suitably small δ. This shows that logα is continuous.

Therefore we can apply the inverse function theorem (Theorem 1.2.5) to exp : Hα→
Uϑ, which shows that its inverse logα is holomorphic with derivative

log′α(z) =
1

exp′
(

logα(z)
) =

1
exp
(

logα(z)
) =

1
z
,

where we use Exercise 3 from List 2 for exp′(w) = exp(w).

Remark 2.4.3. (1) We have

logα(z)− logβ(z) ∈ 2πiZ

for all α,β ∈ R and z ∈ Ueiα ∩Ueiβ .

(2) For α ∈ R and ϑ= eiα, we have

lim
ε→0

with ε>0

(
logα(ϑ · e−iε)− logα(ϑ · eiε)

)
= 2πi.
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(3) We have logα(z ·w)≡ logα(z)+ logα(w) (mod 2πiZ), but in general these terms
are not equal. For example:

log
(

e
3
4πi · e

3
4πi
)

= log
(

e−
1
2πi
)

= −1
2πi

6= 3
2πi =

(3
4πi
)
+
(3

4πi
)
= log

(
e

3
4πi
)
+ log

(
e

3
4πi
)
.

Insert an illustration

Application 1: Complex powers
Heuristically, we could attempt to define the power zw for z,w ∈ C with z,w 6= 0 as

zw ?
= (elogα(z))w = ew logα(z)

for suitable α ∈ R. However, this expression depends on the choice of α.
A better definition of zw is as the set

zw =
{

ew·logβ(z)
∣∣β ∈ R, eiβ 6= z/|z|

}
=
{

ew·(logα(z)+k·2πi) ∣∣k ∈ Z
}
,

which does not depend on the choice of α, but rather combines all possible such choices.

Lemma 2.4.4. Let z,w ∈ C with z,w 6= 0. Then the set zw is a singleton if and only if
w ∈ Z and it is finite if and only if w ∈Q.

Proof. The set
zw =

{
ew·(logα(z)+k·2πi) ∣∣k ∈ Z

}
,

is finite if and only if kw ∈ Z for some k > 0, which is the case if and only if w ∈ Q.
This proves the second claim. The first claim follows since zw is a singleton if and only
if kw ∈ Z for all k > 0, which means that w ∈ Z.

Example 2.4.5. For positive n ∈ N, we have

n
√

z = z1/n =
{

e
1
n logα(z)︸ ︷︷ ︸
=ρ0

·e
k
n ·2πi︸ ︷︷ ︸
=ζk

n

∣∣k = 1, . . . ,n
}
.

where ρ0 is an n-th root of z (which depends on the choice of α) and ζn = e
2πi
n is a

primitive n-th root of unity.
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Proposition 2.4.6. Let w ∈ C×, α ∈ R and ϑ= eiα. Then the map

f : Uϑ −→ C
z 7−→ ew·logα(z)

is holomorphic with derivative

f ′(z) = w · e(w−1)·logα(z).

If we interpret f (z) as (a branch of) zw, then Proposition 1.4.6 shows that f ′(z) is (a
branch of) w · zw−1.

Proof. As a composition of holomorphic functions, f is holomorphic. We use the rules
from Proposition 1.1.3 to compute:

f ′(z) = exp′(w · logα(z)) ·w · log′α(z) = exp(w · logα(z))w ·
1
z

= w · e−1·logα(z) · ew·logα(z) = w · e(w−1)·logα(z).

Application 2: Inverse trigonometric functions
Let z = cos(w). If we try to express w in dependency of z, we find that

z = cos(w) =
1
2
(eiw + e−iw)

⇔ 2z = eiw + e−iw

⇔ (eiw)2−2zeiw +1 = 0

⇔ w = −i · logα
(
z± i

√
1− z2

)
for a suitable α ∈ R. The principal branch of arccos is

arccos : C\{x ∈ R | |x|> 1} −→ C
z 7−→ −i · log

(
z+ i
√

1− z2
)
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where α=−π and 1− z2 ∈ U−1.

Insert an illustration

Similarly, we define the principal branch of arcsin as

arcsin : C\{x ∈ R | |x|> 1} −→ C
z 7−→ −i · log

(
iz+
√

1− z2
)
.



Chapter 3

Path integrals

Motivation

Question. Does the expression
b∫
a

f (z) dz make sense for f : U → C and a,b ∈U ⊂ C?

Thought 1. If f = F ′ for a holomorphic function F : U → C, then we expect that

b∫
a

f (z) dz = F(b)−F(a).

Thought 2. Attempt to construct F :

• Choose F(a) arbitrarily.

• For small ∆z = b−a, we expect that

F(b) ≈ F(a)+∆z · f (a).

• For general b, we would like to define

F(b) = F(a) + lim
n→∞

∆zi→0

n

∑
i=1

∆zi · f (ai−1).

29
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Problem.

Thought 3. Integrate along path γ from a to b.

Question. Is
∫
γ

f (z) dz independent of γ?

3.1 Preliminaries
Definition 3.1.1. Let a6 b be real numbers and f : [a,b]→ C continuous. We define

b∫
a

f (t) dt :=
b∫

a

Re( f (t)) dt + i ·
b∫

a

Im( f (t)) dt

and
a∫

b

f (t) dt = −
b∫

a

f (t) dt.

Proposition 3.1.2. Let a6 b be real numbers and f : [a,b]→ C continuous. Then the
following hold.

(1)
∫ b

a f (t) dt is C-linear in f , i.e.,

b∫
a

( f +g)(t) dt =

b∫
a

f (t) dt +

b∫
a

g(t) dt

and
b∫

a

(c · f )(t) dt = c ·
b∫

a

f (t) dt

for all continuous g : [a,b]→ C and c ∈ C.

(2) For a = a0 6 . . .6 an = b,

b∫
a

f (t) dt =
n

∑
i=1

ai∫
ai−1

f (t) dt
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(3) If f = F ′ =
(

∂F/∂x
∂F/∂y

)
for (real) differentiable F : [a,b]→ C, then

b∫
a

f (t) dt = F(b)−F(a).

(4) Let α : [c,d]→ [a,b] be a continuously differentiable map where c6 d. Then

α(d)∫
α(c)

f (t) dt =

d∫
c

f (α(s)) ·α′(s) ds.

(5) ∣∣∣∣ b∫
a

f (t) dt
∣∣∣∣ 6

b∫
a

| f (t)| dt 6 (b−a) ·max{| f (t)| | a6 t 6 b}.

Note that {| f (t)| | a6 t 6 b} is compact as the image of the compact interval [a,b]
under the continuous map | f | : [a,b]→ R, and therefore its maximum exists.

3.2 Path integrals
Definition 3.2.1. Let U be an open subset of C. A path in U is a continuous map
γ : [a,b]→U where a6 b. A path γ : [a,b]→U is closed if γ(a) = γ(b). It is smooth
if it is continuously differentiable. We denote its derivative by

γ′(t) =
d
dt
γ(t) =

( d
dt Re(γ(t))
d
dt Im(γ(t))

)
.

In the literature, paths are also called curves or arcs. Typically we parameterize paths
γ : I→U by the unit interval I = [0,1].

Definition 3.2.2. Let U ⊂ C be open, γ : [a,b]→U smooth and f : U → C continuous.
The path integral of f along γ is

∫
γ

f =
∫
γ

f (z) dz :=
b∫

a

f (γ(t)) ·γ′(t) dt.

The arc length of γ is

`(γ) :=
b∫

a

|γ′(t)| dt.

Example 3.2.3.
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(1) Let p ∈U . The constant path based at p is the path γ : I→U with γ(t) = p for
all t ∈ I. Its derivative is γ′(t) =

(0
0

)
for all t ∈ I. Therefore

`(γ) =

1∫
0

|γ′(t)| dt = 0 and
∫
γ

f =

1∫
0

f (γ(t)) ·γ′(t) dt = 0

for any continuous function f : U → C.

(2) Let p,q ∈U . The linear path from p to q is the path γ : I→U given by γ(t) =
p+ t · (q− p) for t ∈ I. Its derivative is γ′(t) = q− p for all t ∈ I. Therefore

`(γ) =

1∫
0

|q− p| dt = |q− p| and
∫
γ

f =

1∫
0

f (γ(t)) · (q− p) dt

for any continuous function f : U → C. For example, if γ(t) = t is the linear path
from 0 = γ(0) to 1 = γ(1), then

∫
γ

f =

1∫
0

Re( f (t))dt

is the same as the usual integral of the real valued function Re ◦ f : I→ R.

(3) Let w ∈ C and r > 0. The (parameterized) circle of radius r around w is the path

Cr(w) : I −→ C
t 7−→ w+ re2πi·t

Its derivative is Cr(w)′(t) = 2πi · re2πi·t and its length is

`(Cr(w)) =

1∫
0

|2πi · re2πi·t | dt =

1∫
0

2π · r · |e2πi·t |︸ ︷︷ ︸
=1

dt = 2π · r.
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Let w = 0 and r = 1. Consider f : C×→ C with f (z) = zn for n ∈ Z. If n 6=−1,
then f = F ′ for F(z) = 1

n+1zn+1 and thus∫
C1(0)

f =
∫

C1(0)
zn dz

(!)
= F(1)−F(1) = 0,

as we show in Proposition 2.2.4. For n =−1, this integral is more interesting:

∫
C1(0)

1
z

dz =

2π∫
0

1
eit ·

( d
dt

eit
)

dt =

2π∫
0

1
eit · i · e

it dt =

2π∫
0

i dt = 2πi.

Proposition 3.2.4. Let U ⊂ C be open, f : U → C continuous and γ : [a,b]→ U a
smooth path. Then

(1)
∫
γ f is C-linear in f .

(2) For a = a0 6 . . .6 an = b and γi = γ|[ai−1,ai],∫
γ

f =
n

∑
i=1

∫
γi

f .

(3) If f = F ′ for a holomorphic function F : U → C, then∫
γ

f = F(γ(b))−F(γ(a)).

(4) Let α : [c,d]→ [a,b] be continuously differentiable with α(c) = a and α(d) = b.
Then ∫

γ◦α

f =
∫
γ

f .

(5) ∣∣∣∣ ∫
γ

f
∣∣∣∣ 6 `(γ) ·max{| f (z)| | z ∈ im(γ)}.

(6) Let γ− : [a,b]→U be defined by γ−(t) = γ(a+b− t). Then∫
γ−

f = −
∫
γ

f .

Proof. Properties (1) and (2) follow directly from the corresponding properties of
Proposition 2.1.2.

Property (3) follows from the direct computation

∫
γ

f =

b∫
a

F ′(γ(t)) ·γ′(t) dt =

b∫
a

(F ◦γ)′(t) dt = F(γ(b))−F(γ(a))
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where we use the chain rule for multivariate real-valued functions for the second equality
and Proposition 2.1.2.(3) for the third equality.

Property (4) follows from the direct computation

∫
γ◦α

f =

d∫
c

f (γ ◦α(s)) · (γ ◦α)′(s) ds

=

d∫
c

f (γ(α(s))) ·γ′(α(s)) ·α′(s) ds

=

b∫
a

f (γ(t)) ·γ′(t) dt =
∫
γ

f

where we use Proposition 2.1.2.(4) for the third equality.
Property (5) follows from the direct computation∣∣∣∣ ∫

γ

f
∣∣∣∣ = ∣∣∣∣ b∫

a

f (γ(t)) ·γ′(t) dt
∣∣∣∣

6

b∫
a

| f (γ(t))| · |γ′(t)| dt

6 `(γ) ·max{| f (z)| | z ∈ im(γ)}

where we use Proposition 2.1.2.(5) for the first inequality. The second inequality follows
from | f (γ(t))|6max{| f (z)| | z ∈ im(γ)}.

Property (6) follows analogously to (4), using that γ− = γ ◦ α for the map α :
[a,b]→ [a,b] with α(t) = a+b− t. The difference is that the end points are reversed,
i.e., α(a) = b and α(b) = a, which leads to

∫
γ−

f =

α(b)∫
α(a)

f (γ(t)) ·γ′( f ) dt = −
b∫

a

f .

Definition 3.2.5. Let U ⊂ C be open. A contour in U is a path γ : [a,b]→ U that
is piecewise smooth, i.e. there are a = a0 < · · · < an = b such that the restrictions
γi : [ai−1,ai]→U of γ to [ai−1,ai] are smooth for all i = 1, . . . ,n.

Given a contour γ : [a,b]→U and a0 < · · ·< an as above and a holomorphic function
f : U → C, we define the path integral of f along γ as∫

γ
f =

n

∑
i=1

∫
γi

f

Remark 3.2.6. There is a unique minimal choice of a0 < · · · < an for a contour γ,
which are the points where γ fails to be continuously differentiable. By property (2) of
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Proposition 2.2.4, the value of the path integral
∫
γ f is, however, independent of adding

points to the sequence a0 < · · ·< an, which shows that
∫
γ f is independent of the choice

of a0 < · · ·< an.
All properties of Proposition 2.2.4 generalize literally to contours; cf. Exercise 2.8.8.

Outlook: Cauchy’s integral theorem
Our goal in this chapter is to prove the following.

Theorem (Cauchy’s integral theorem). Let U ⊂ C be open, f : U → C holomorphic
and γ : I→ C a path. If γ is contractible, then

∫
γ

f = 0.

Question.

• What does it mean that a path is contractible?

• What is
∫
γ

f for a path γ that is not smooth?

Strategy. The proof of Cauchy’s integral theorem is intricate and progresses along the
following steps:

(1) Goursat:
∫
γ f = 0 for triangular paths.

(2) Primitives for f on discs.

(3) Define
∫
γ f for arbitrary paths.

(4) Homotopy invariance of
∫
γ f .

(5) Cauchy’s integral theorem and more.

3.3 Goursat’s theorem
A triangle in C is a subset of the following form:
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A boundary curve for T is a closed path γ : I→ T that transverses once counter-
clockwise around T (i.e., it is injective on (0,1) and linear on the segments between the
vertices of T ). Note that γ is a contour and thus∫

γ

f =
∫
γ1

f +
∫
γ2

f +
∫
γ3

f .

Theorem 3.3.1 (Goursat). Let U ⊂ C be open, f : U → C holomorphic and T ⊂U a
triangle with boundary curve γ : I→ T . Then

∫
γ f = 0.

Proof. Define T0 = T and γ0 = γ. For n> 1, we define triangles Tn by recursion:

We subdivide a given triangle Tn−1 into four congruent triangles Tn,1, . . . ,Tn,4 of
equal size with respective boundary curves γn,1, . . . ,γn,4. Then

∫
γn−1

f =
4

∑
i=1

∫
γn,i

f

We define Tn = Tn,k and γn = γn,k for a k ∈ {1, . . . ,4} such that∣∣∣∣ ∫
γn,k

f
∣∣∣∣ >

∣∣∣∣ ∫
γn,i

f
∣∣∣∣

for all i = 1, . . . ,4. Then there is a unique z0 ∈ T that is contained in Tn for all n, and

`(γn) = (1
2)

n · `(γ0) and d(Tn) = (1
2)

n ·d(T0)
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where d(Tn) := max{|z−w| | z,w ∈ Tn} is the diameter of Tn. We have

h(z) :=
f (z)− f (z0)

z− z0
− f ′(z0) −→

z→z0
0.

Then ∫
γn

f =
∫
γn

(
f (z0)+ f ′(z0)(z− z0)+h(z)(z− z0)

)
dz.

Since f (z0)+ f ′(z0)(z− z0) is linear in z, it has a primitive, and thus its path integral
along γn is 0. Therefore ∫

γn

f =
∫
γn

h(z)(z− z0) dz.

We conclude that∣∣∣∣ ∫
γ

f
∣∣∣∣ 6 4n ·

∣∣∣∣ ∫
γn

f
∣∣∣∣ 6 4n ·

∫
γn

|h(z)| · |z− z0| dz

6 2n ·d(Tn) ·2n · `(γn) ·max{|h(z)| | z ∈ im(γn)}
6 d(T ) · `(γ) ·max{|h(z)| | z ∈ im(γn)} −→

n→∞
0

where we use that |z− z0|6 d(Tn) and Proposition 2.2.4.(5) in the third inequality. We
conclude that

∣∣∫
γ f
∣∣= 0 and thus

∫
γ f = 0, as claimed.

3.4 Primitives on discs
Definition 3.4.1. Let U ⊂ C be open and f : U → C a function. A primitive of f is a
holomorphic function F : U → C with F ′(z) = f (z) for all z ∈U .

Theorem 3.4.2. Let Dr(z0) be an open disc of radius r > 0 with center z0 and f :
Dr(z0)→ C a holomorphic function. For every z ∈ Dr(z0) define the linear path

γz : I −→ Dr(z0)
t 7−→ z0 + t(z− z0).

Then the function
F : Dr(z0) −→ C

z 7−→
∫
γz

f

is a primitive of f .

Proof. We want to show that

lim
h→0

F(z+h)−F(z)
h

= f (z).
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By Theorem 2.3.1, we have

F(z+h)−F(z) =
∫
γz+h

f −
∫
γz

f =
∫
γ̃

f

where γ̃ is the linear path from z to z+h:
Since f is continuous,

g(w) := f (w)− f (z) −→
w→z

0

for fixed z. Since∣∣∣∣ ∫
γ̃

g(w) dw
∣∣∣∣ 6 `(γ̃) ·max{|g(w)| | w ∈ im(γ̃)},

and `(γ̃) = |h|, we have

lim
h→0

1
h
·
∫
γ̃

g(w) dw = 0

and

lim
h→0

F(z+h)−F(z)
h

= lim
h→0

1
h
·
∫
γ̃

( f (z)+g(w)) dw = lim
h→0

1
h
·h · f (z) = f (z),

as desired.

As a consequence, we can prove Cauchy’s integral theorem for discs at once.

Corollary 3.4.3. Let f : Dr(z0)→ C be holomorphic and γ : I→ Dr(z0) a closed and
smooth path. Then

∫
γ f = 0.

Proof. By Theorem 2.4.2, f has a primitive F . By Proposition 2.2.4.(3),∫
γ

f = F(γ(1))−F(γ(0)) = 0.
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3.5 Integrals along continuous paths
Idea. If a holomorphic function f : U → C has a primitive F : U → C, then

∫
γ f =

F(γ(1))−F(γ(0)) for a smooth path γ : I→U . The right hand side of this equation
does not involve γ at all and makes sense for arbitrary paths. By Theorem 2.4.2, we
know that holomorphic functions have primitives on discs. Our strategy to define the
path integral for arbitrary paths is to cover the path by open discs and use primitives for
each disc to define the integral piece by piece.

Lemma 3.5.1. Let U ⊂ C be open and γ : I → U continuous. Then there are real
numbers 0 = a0 < .. . < an = 1 and open discs D1, . . . ,Dn ⊂U such that γ([ai−1,ai])⊂
Di for i = 1, . . . ,n.

Proof. Since U is open, there is for every t ∈ I an εt such that the open disc Dεt (γ(t))
with center γ(t) is contained in U , and im(γ) is contained in the union of all discs
Dεt (γ(t)) (for t ranging through all of I). Thus the collection of all Vt = γ−1(Dεt (γ(t))
(for t ∈ I) is an open cover of I. By Lebesgue’s Lemma (Lemma 0.7.3), there is an
n ∈ N such that for every i = 1, . . . ,n, there exists a ti ∈ I such that the interval [ i−1

n , i
n ]

is contained in Vti . Thus the claim of the lemma holds for Di = Dεti
(γ(ti)) and ai =

i
n

for i = 1, . . . ,n.

Consider a holomorphic function f : U → C and a path γ : I→U . By Lemma 2.5.1,
we find 0= a0 < .. . < an = 1 and open discs D1, . . . ,Dn⊂U such that γ([ai−1,ai])⊂Di.
Let γi := γ|[ai−1,ai]. By Theorem 2.4.2, f |Di : Di → C has a primitive Fi for every
i = 1, . . . ,n.

If γ is smooth, then we have

∫
γ

f =
n

∑
i=1

∫
γi

f |Di =
n

∑
i=1

Fi(γ(ai))−Fi(γ(ai−1)
)

by Proposition 2.2.4. The right hand side does not depend on γ being smooth, so we
attempt to use this equation as a definition for

∫
γ f for an arbitrary path γ. The following

result verifies the independence from all involved choices.
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Definition 3.5.2. Let U ⊂C be open, f : U→C holomorphic and γ : I→U a path. Let
0 = a0 < .. . < an = 1, D1, . . . ,Dn ⊂U , F1, . . . ,Fn and γ1, . . . ,γn be as above. Then the
path integral of f along γ is∫

γ

f :=
n

∑
i=1

Fi(γ(ai))−Fi(γ(ai−1)
)
.

Proposition 3.5.3. Let γ : I→U, f : U →C, a0, . . . ,an, D1, . . . ,Dn and F1, . . . ,Fn as in
Definition 2.5.2. Then the complex number∫

γ

f =
n

∑
i=1

Fi(γ(ai))−Fi(γ(ai−1)
)

does not depend on the choices of ai, Di and Fi.

Proof. We aim to show that
∫
γ f has the same value for different choices of ai, Di and

Fi. We consider such alternative choices step by step.

Step 1. Consider fixed 0 = a0 < .. . < an = 1 and alternative choices of discs D′1, . . . ,D
′
n

and primitives F ′1, . . . ,F
′
n of the restriction of f to these discs. Let γ̃i : [ai−1,ai]→Di∩D′i

be a smooth path from zi−1 = γ(ai−1) to zi = γ(ai) (e.g. a linear path). Then by
Proposition 2.2.4,

F ′i (zi)−F ′i (zi−1) =
∫
γ̃i

f = Fi(zi)−Fi(zi−1).

Thus
n

∑
i=0

F ′i (zi)−F ′i (zi−1) =
n

∑
i=0

Fi(zi)−Fi(zi−1)

which shows that the definition of
∫
γ f is independent from the choices of discs Di and

primitives Fi once the ai are fixed.

Step 2. Let k ∈ {1, . . . ,n} and refine 0 = a0 < .. . < an = 1 by a new element a′k with
ak−1 < a′k < ak. Let z′k := γ(a′k), D′k := Dk and F ′k := Fk. Then

γ([ak−1,a′k]) ⊂ D′k and γ([a′k,ak]) ⊂ Dk,

and F ′k is a primitive of f on D′k. Therefore∫
γ|[ak−1,ak ]

f = Fk(zk)−Fk(zk−1)

=
(
Fk(zk)−Fk(z′k)

)
+
(
F ′k(z

′
k)−F ′k(zk−1)

)
=

∫
γ|[ak−1,a

′
k ]

f +
∫

γ|[a′k ,ak ]

f .
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In conclusion,
∫

f does not change under refinements of 0 = a0 < .. . < an = n.

Step 3. Given two sequences 0 = a0 < .. . < an = 1 and 0 = b0 < .. . < bm = 1, we
can pass to a common refinement 0 = c0 < .. . < cr = 1, i.e., {a0, . . . ,an,b0, . . . ,bm} ⊂
{c0, . . . ,cr}. Let Fa,i, Fb,i and Fc,i be primitives on suitable discs for these three sequences.
Since

∫
γ f is invariant under refinements by step 2, we get

n

∑
i=1

Fa,i(γ(ai))−Fa,i(γ(ai−1)) =
r

∑
i=1

Fc,i(γ(ci))−Fc,i(γ(ci−1))

=
m

∑
i=1

Fb,i(γ(bi))−Fb,i(γ(bi−1)),

which shows that
∫
γ f is independent of the choices of ai, Di and Fi, as claimed.

Corollary 3.5.4. Let γ : I→U be a path, f : U → C holomorphic and 0 = a0 < .. . <
an = 1 such that γ([ai−1,ai]) is contained in a disc Di ⊂U for i = 1, . . . ,n. Let γ̃i be the
linear path from γ(ai−1) to γ(ai). Then

∫
γ

f =
n

∑
i=1

∫
γ̃i

f .

Proof. Let Fi be a primitive for f |Di . Then either side of the equation in the corollary
are equal to ∑

n
i=1 Fi(γ(ai))−Fi(γ(ai−1)).

Remark 3.5.5. All properties of Proposition 2.2.4 generalize to any (merely continuous)
path; cf. Exercise 2.8.8.
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3.6 Homotopies
Definition 3.6.1. Let U ⊂ C be open and γ0,γ1 : I→U paths. A homotopy from γ0 to
γ1 in U is a continuous map

H : I× I −→ U
(s, t) 7−→ Hs(t) = H(s, t)

such that H0 = γ0 and H1 = γ1 (as functions from I to U). If there is such a homotopy,
we say that γ0 and γ1 are homotopic in U and write γ0 ' γ1.

Theorem 3.6.2. Let U ⊂ C be open and f : U → C holomorphic. Let H : I× I→U be
continuous and γ : I→U its boundary curve, i.e.,

γ(t) =


H(0,4t) for 06 t < 1/4;
H(4t−1,1) for 1/46 t < 2/4;
H(1,3−4t) for 2/46 t < 3/4;
H(4−4t,0) for 3/46 t 6 1.

Then
∫
γ f = 0.
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Proof. Since U is open, there is for every (s, t) ∈ I× I an ε(s, t)> 0 such that the open
disc Dε(s,t)(H(s, t)) is contained in U . Thus I× I is equal to the union of all inverse
images Vs,t := H−1(Dε(s,t)

(
H(s, t)

))
for varying (s, t) ∈ I× I. By Lebesgue’s lemma

(Lemma 0.7.3), there is an n> 0 such that for all k, l = 1, . . . ,n, there is an (s, t) ∈ I× I
such that Ik× Il ⊂ Vs,t for Ik := [k−1

n , k
n ], Il := [ l−1

n , l
n ]. Thus H(Ik× Il) is contained in

the open disc Dk,l := Dε(s,t)(H(s, t)).

Figure 3.1: The larger square (top right corner) is the enlarged version of one of the
smaller squares in the grid (eg. [0,1] × [0,1])

Define for k, l = 1, . . . ,n the boundary paths γ(i)k,l : I→ H(Ik× Il) (for i = 1, . . . ,4) as

γ
(1)
k,l (t) = H(k−1

n , l−1+t
n );

γ
(2)
k,l (t) = H(k−1+t

n , l
n);

γ
(3)
k,l (t) = H( k

n ,
l−t
n );

γ
(4)
k,l (t) = H(k−t

n , l−1
n ).

The concatenation of these paths form the boundary of H|Ik×Il .
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Figure 3.2: Integrating over all the little square becomes the same as integrating over the
entire line around the unit square

Since H(Ik× Il) is contained in an open disc Dk,l and since f |Dk,l has a primitive Fk,l ,
we have∫

γ
(1)
k,l

f +
∫
γ
(2)
k,l

f +
∫
γ
(3)
k,l

f +
∫
γ
(4)
k,l

f = F
(
H(k−1

n , l−1
n )
)
−F

(
H(k−1

n , l−1
n )
)
= 0.

Together with the observations that

γ
(1)
k,l+1(t) = γ

(3)
k,l (1− t) and γ

(2)
k,l (1− t) = γ

(4)
k+1,l(t)

for all eligible k and l, and that γ is the concatenation of all paths of the forms

γ
(1)
0,l , γ

(2)
k,1 , γ

(3)
1,l , γ

(4)
k,0

(for k, l = 1, . . . ,n), we conclude that

∫
γ

f =
n

∑
k,l=1

4

∑
i=1

∫
γ
(i)
k,l

f = 0.

3.7 Cauchy’s integral theorem
Definition 3.7.1. Let U ⊂ C be open and γ0,γ1 : I →U paths. A homotopy from γ0
to γ1 in U relative to {0,1} is a homotopy H : I× I → U from γ0 to γ1 in U such
that H(s,0) = γ0(0) = γ1(0) and H(s,1) = γ0(1) = γ1(1) for all s ∈ I. If there is such
a homotopy, we say that γ0 and γ1 are homotopic in U relative to {0,1} and write
γ0 ' γ1 rel {0,1}.
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Figure 3.3: Definition 2.7.1

Note that necessarily we must have γ0(0) = γ1(0) and γ0(1) = γ1(1) for γ0 and γ1
to be homotopic relative to {0,1}.

Theorem 3.7.2. Let U ⊂ C be open, f : U → C holomorphic and γ0,γ1 : I→U paths
that are homotopic in U relative to {0,1}. Then∫

γ0

f =
∫
γ1

f .

Proof. Let H : I× I→U be a homotopy from γ0 to γ1 relative to {0,1}. Let p0 := γ0(0)
and p1 := γ0(1). Let cp0 : I→U and cp1 : I→U be the constant paths based on p0 and
p1, respectively. Then the boundary curve ∂H of H is equal to the concatenation of γ0,
cp1 , γ−1 and cp0 .

Figure 3.4: Theorem 2.7.2

Thus the claim of the theorem follows from∫
γ0

f −
∫
γ1

f =
∫
γ0

f +
∫

cp1

f +
∫
γ−1

f +
∫

cp0

f =
∫

∂H

f = 0,

where we use Example 2.2.3.(1) and Proposition 2.2.4.(6) for the first equality and
Theorem 2.6.2 for the third equality.

Definition 3.7.3. Let U ⊂C be open and γ0,γ1 : I→U closed paths. A closed homotopy
from γ0 to γ1 in U is a homotopy H : I× I→U from γ0 to γ1 in U such that H(s,0) =
H(s,1) for all s ∈ I. If there is such a homotopy, we say that γ0 and γ1 are closed
homotopic in U .
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Figure 3.5: Definition 2.7.3

Theorem 3.7.4 (Cauchy’s integral theorem, version 1). Let U ⊂ C be open, f : U → C
holomorphic and γ0,γ1 : I→U closed paths that are closed homotopic. Then∫

γ0

f =
∫
γ1

f .

Proof. Let H : I× I→U be a closed homotopy from γ0 to γ1 and δ(s) = H(s,1). Then
δ(s) = H(s,0), and the boundary curve ∂H is equal to the concatenation of γ0, δ, γ−1
and δ−.

Figure 3.6: Proof of Theorem 2.7.4

Thus the claim of the theorem follows from∫
γ0

f −
∫
γ1

f =
∫
γ0

f +
∫
δ

f +
∫
γ−1

f +
∫
δ−

f =
∫

∂H

f = 0,

where we use Proposition 2.2.4.(6) for the first equality and Theorem 2.6.2 for the third
equality.

Definition 3.7.5. Let U ⊂ C be open. A closed path γ : I→U is contractible in U if it
is closed homotopic in U to a constant path.

Theorem 3.7.6 (Cauchy’s integral theorem, version 2). Let U ⊂ C be open, f : U → C
holomorphic and γ : I→U a contractible closed path. Then

∫
γ f = 0.
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Proof. Since γ is contractible, it is closed homotopic to a constant path c : I→U . By
Theorem 2.7.4 and Example 2.2.3.(1), we have

∫
γ f =

∫
c f = 0.

Definition 3.7.7. A domain is an open subset U ⊂ C that is path-connected. A domain
U ⊂ C is simply connected if every closed path γ : I→U is contractible in U .

Figure 3.7: Simply connected domain

Theorem 3.7.8 (Cauchy’s integral theorem, version 3). Let U ⊂C be a simply connected
domain, f : U → C holomorphic and γ : I→U a closed path. Then

∫
γ f = 0.

Proof. Since U is simply connected, γ is contractible. Thus the result follows at once
from Theorem 2.7.6.

3.8 Exercises
Exercise 3.8.1. Compute the path integral of f (z) = z and of g(x+ iy) = x− iy over the
closed “triangular” path from 0 to 1 to i to 0.

Exercise 3.8.2. Let U ⊂ C be an open subset and f : U → C holomorphic. Show that
the following are equivalent:

(1) f is constant on discs in U .

(2) f (z)− f (a) ∈ R if z,a ∈ Dr(w) for an open disc Dr(w) that is contained in U .

(3) f ′(a) = 0 for all a ∈U .

Exercise 3.8.3. Let γ = {3eit | t ∈ [0, π2 ]}. Find an N ∈ R such that∣∣∣∣∣∣
∫
γ

1
z2 + z+1

dz

∣∣∣∣∣∣ 6 N.

Exercise 3.8.4. Let U be an open subset of C and f : U → C a polynomial function.
Let γ be a closed path. Show that

∫
γ f = 0.
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Exercise 3.8.5. Let U = C\{−1,1} and f : U → C analytic. Assume that
∫
γ1

f =−1
and

∫
γ2

f = 2πi for γi : [0,1]→U with γ1(t) = 1+ e2πit and γ2(t) =−1+ e2πit . Make
an illustration of γ1 and γ2, as well as:

γ3 : [0,1] −→ C,
t 7−→ i+2e4πit ,

γ4 : [0,1] −→ C
t 7−→ 2i+2e4πit ,

and
γ5 : [0,1] −→ C

t 7−→

{
−1+ e−4πit for 06 t 6 1/2;
1+ e4πit−iπ for 1/2< t 6 1.

Compute
∫
γi

f for i = 3,4,5. Find a function f for which the integrals of this exercise
assume the given values.

Exercise 3.8.6. Show that the following open and connected subsets U of C are simply
connected:

C, an open disc Dr(Z0), a star shaped domain.

Show that the “punctured disc” D•r (z0) = Dr(z0)\{z0} is not simply connected.

Exercise 3.8.7. Let γ : I→U be a closed and contractible path in U with z0 = γ(0) =
γ(1) and cz0 : I →U the constant path with cz0(t) = z0 for all t ∈ I. Show that there
is a closed homotopy H : I× I→U from γ to cz0 in U relative to {0,1}, i.e. Hs(0) =
Hs(1) = H1(t) = z0 for all s, t ∈ I.

Exercise 3.8.8. Prove that all claims of Proposition 2.2.4 also hold if the path γ : I→ C
is (a) piecewise smooth and (b) continuous. This is:

Let U ⊂ C be open, f : U → C piecewise smooth (or merely continuous) and
γ : [a,b]→U a path. Then

(1)
∫
γ f is C-linear in f .

(2) For a = a0 6 . . .6 an = b and γi = γ|[ai−1,ai],∫
γ

f =
n

∑
i=1

∫
γi

f .

(3) If f = F ′ for a holomorphic function F : U → C, then∫
γ

f = F(γ(b))−F(γ(a)).

(4) Let α : [c,d]→ [a,b] be continuously differentiable with α(c) = a and α(d) = b.
Then ∫

γ◦α

f =
∫
γ

f .
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(5) ∣∣∣∣ ∫
γ

f
∣∣∣∣ 6 `(γ) ·max{| f (z)| | z ∈ im(γ)}.

(6) Let γ− : [a,b]→U be defined by γ−(t) = γ(a+b− t). Then∫
γ−

f = −
∫
γ

f .





Chapter 4

Analytic functions

4.1 Cauchy’s integral formula
Recall that Cr(z) : I→C is the circle of radius r around z, given by Cr(z)(t) = z+ re2πi·t .
We denote by Dr(z) = {w ∈ C | |w− z| 6 r} the closed disc of radius r with center z,
which is the closure of the open disc Dr(z).

Theorem 4.1.1 (Cauchy’s integral formula). Let U ⊂ C be open and f : U → C holo-
morphic. Consider a closed disc Dr(z0)⊂U for some r > 0 and z0 ∈U and z ∈ Dr(z0).
Then

f (z) =
1

2πi

∫
Cr(z0)

f (w)
w− z

dw.

Proof. The function f (w)
w−z is holomorphic in w ∈U \{z}. For 0 < ε < r−|z− z0|, the

circular path Cε(z) is contained in U \{z} and closed homotopic to Cr(z0) in U \{z}.

By Cauchy’s integral theorem (Theorem 2.7.4), we have

∫
Cr(z0)

f (w)
w− z

dw =
∫

Cε(z)

f (w)
w− z

dw =
∫

Cε(z)

f (w)− f (z)
w− z

dw +
∫

Cε(z)

f (z)
w− z

dw.

51
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Since limw→z
f (w)− f (z)

w−z = f ′(w), we have∣∣∣∣ ∫
Cε(z)

f (w)− f (z)
w− z

dw
∣∣∣∣ 6 2πε ·max

{∣∣∣ f (w)− f (z)
w− z

∣∣∣ ∣∣∣∣w ∈ im(Cε(z))
}
−→
ε→0

0.

and since the integral is independent of ε, we conclude that
∫

Cε(z)
f (w)− f (z)

w−z dw = 0. Thus

∫
Cr(z0)

f (w)
w− z

dw =
∫

Cε(z)

f (z)
w− z

dw = f (z) ·
∫

Cε(0)

1
u

du = 2πi · f (z),

where we use u = w− z in the second equality (note that ∂u
∂w = 1) and Example 2.2.3.(3)

in the third equality. Dividing both sides by 2πi yields the result.

Example 4.1.2. We can use Cauchy’s integral formula to compute path integrals, such
as ∫

C2(0)

ew

w−1
dw =

∫
C2(0)

f (w)
w− z

dw = 2πi · f (z) = 2πi · e,

where we use f (w) = ew and z = 1.

Corollary 4.1.3 (mean value principle). Let U ⊂ C be open, f : U → C holomorphic
and Dr(z)⊂U for some r > 0 and z ∈U. Then

f (z) =
1

2π
·

2π∫
0

f (z+ reit) dt.

Proof. By Cauchy’s integral formula (Theorem 3.1.1),

f (z) =
1

2πi
·
∫

Cr(z)

f (w)
w− z

dw

=
1

2πi
·

2π∫
0

f (z+ reit)

reit · ireit dt

=
1

2π
·

2π∫
0

f (z+ reit) dt,

where we use Proposition 2.2.4.(4) with respect to the bijection α : [0,2π]→ [0,1] with
α(t) = t

2π and substitute w = z+ reit in the second equality (note that ∂w
∂ t = ireit).
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4.2 The maximum modulus principle
Lemma 4.2.1. Let f : Dr(z)→ C be holomorphic where r > 0 and z ∈ C. If | f (w)|6
| f (z)| for all w ∈ Dr(z), then | f (w)| is constant (and equal to | f (z)|) for w ∈ Dr(z).

Proof. By the mean value principle (Corollary 3.1.3) and Proposition 2.2.4.(5), we have
for any 0< s< r that

∣∣ f (z)∣∣ = 1
2π

∣∣∣∣ 2π∫
0

f (z+ seit) dt
∣∣∣∣ 6 1

2π

2π∫
0

∣∣ f (z+ seit)
∣∣ dt

6
1

2π
·2π ·max

{
| f (z+ seit)|

∣∣06 t 6 2π
}
6
∣∣ f (z)∣∣.

We conclude that all inequalities are equalities and that

2π∫
0

∣∣ f (z+ seit)
∣∣ dt = 2π · | f (z)|.

Since | f (z+ seit)| is continuous in t and has values in [0, | f (z)|], the previous equality
implies that | f (z+ seit)|= | f (z)| for all t ∈ [0,2π] (cf. Exercise 3.7.1).

Since every w ∈ Dr(z) \ {z} is of the form w = z+ seit for some s ∈ (0,r) and
t ∈ [0,2π], the result follows.

Theorem 4.2.2 (maximum modulus principle). Let K ⊂ C be compact and f : K→ C
a continuous function whose restriction to the interior of K is holomorphic. Then the
function

| f | : K −→ R
z 7−→ | f (z)|

assumes its maximum on the boundary of K, i.e., there is a w in the boundary of K such
that | f (z)|6 | f (w)| for all z in K.
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Proof. As the composition of two continuous functions, f and | · |, the function | f | :
K→ R is continuous. Since K is compact, | f | assumes its maximum on K, i.e., there is
a z0 ∈ K such that | f (z)|6 | f (z0)|= M for all z ∈ K; cf. Lemma 0.7.2.

Let ∂K be the boundary of K and K̃ := | f |−1(M). Both subsets are closed since

K \
◦
K and {M} are closed. They are bounded as subsets of K, and therefore compact.

Thus the Cartesian product ∂K× K̃ is compact and the function

d : ∂K× K̃ −→ R
(w,z) 7−→ |w− z|

assumes its minimum in some point (w0, z̃0) ∈ ∂K× K̃ (again, cf. Lemma 0.7.2).

If |w0− z̃0| > 0, then we have for all sufficiently small ε > 0 and z ∈ Dε(z0) ⊂ K
that | f (z)| 6 | f (z0)| = M. By Lemma 3.2.1, | f (z)| = | f (z0)| for all Dε(z0) and thus
|w0− z|< |w0− z̃0| for some z ∈Dε(z̃0), which is a contradiction since we assumed that
the minimum of d was attained at (w0, z̃0).

We conclude that |w0− z̃0|= 0, i.e., | f | assumes its maximum in z̃0 = w0 ∈ ∂K.

4.3 Analytic functions
Definition 4.3.1. Let z0 ∈ C. A power series around z0 is an expression of the form

∞

∑
n=0

an · (z− z0)
n

with a0,a1, . . . ∈ C.

Theorem 4.3.2 (Cauchy-Hadamard, version 2). Let ∑an(z− z0)
n be a power series

around z0 ∈ C and

r =
1

limsup |an|
1
n
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its radius of convergence. Then ∑an(z− z0)
n converges absolutely for all z ∈ Dr(z0)

and defines a holomorphic function

f : Dr(z0) −→ C
z 7−→ ∑an(z− z0)

n

with derivative

f ′(z) =
∞

∑
n=0

(n+1) ·an+1 · (z− z0)
n

for z ∈ Dr(z0). In particular, the radius of convergence of ∑(n+1)an+1(z− z0)
n is r.

Proof. This follows from Theorem 1.3.4 and Theorem 1.3.7 if we substitute z− z0 by
w.

In the following, we briefly write that

f : Dr(z0) −→ C
z 7−→ ∑an(z− z0)

n

is holomorphic, by which we mean that ∑an(z− z0)
n converges for all z ∈ Dr(z0). We

denote the n-th derivative of a sufficiently complex differentiable function f : U → C in
z0 by

f (n)(z0) :=
dn

dzn f (z0).

Corollary 4.3.3. Let
f : Dr(z0) −→ C

z 7−→ ∑an(z− z0)
n

be holomorphic. Then f is arbitrarily often complex differentiable (in all z in Dr(z0))
and

an =
1
n!

f (n)(z0).

Proof. A repeated application of Theorem 3.3.2 yields

f (k)(z0) =
∞

∑
n=k

n · (n−1) · · ·(n− k+1) ·an · (z0− z0)
n−k = k! ·ak

where we apply the usual convention that 0n−k = 0 for n−k> 0 and 00 = 1. This shows
that f is arbitrarily often complex differentiable. Dividing both sides by k! proves the
second part of the claim.

Definition 4.3.4. Let U ⊂C be open. An analytic function in U is a function f : U→C
that is arbitrarily often complex differentiable such that for every z0 ∈U , there is an
r > 0 such that Dr(z0)⊂U and

f (z) =
∞

∑
n=0

f (n)(z0)

n!
(z− z0)

n

for every z ∈ Dr(z0). In particular, this assumes that the right hand side of this equation
converges, which is called the Taylor expansion of f at z0.
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Example 4.3.5. Let U = C\{1} and f : U → C be given by f (z) = 1
1−z . Since f (z) is

the multiplicative inverse of (1− z) and since the Cauchy product (1− z) ·∑zn equals 1,
we conclude that the Taylor expansion of f at z0 = 0 is the geometric series

f (z) =
∞

∑
n=0

zn.

We know already that it converges on the unit disc D1(0). In particular this means f
restricted to D1(0) is analytic.

4.4 Holomorphic functions are analytic
In this section, we show that holomorphic functions are analytic. In a critical step in
the proof, we need to exchange a limit with an integral, which requires the uniform
convergence of a sequence of functions. We provide the necessary background on this
before we turn to the central theorem of this section.

Definition 4.4.1. Let A⊂ C be a subset, { fn : A→ C}n∈N a sequence of functions and
f : A→ C a function. The sequence { fn} converges uniformly to f if for every ε> 0,
there is an N > 0 such that for all z ∈ A and n> N,∣∣ f (z)− fn(z)

∣∣ < ε.

We write fn⇒ f if { fn} converges uniformly to f .

Lemma 4.4.2. Let γ : [0,1]→C be a path with image Γ and { fn : Γ→C}n∈N a sequence
of continuous functions that converges uniformly to a continuous function f : Γ→ C.
Then

lim
n→∞

∫
γ

fn =
∫
γ

f .

Proof. Since fn⇒ f , there is for every ε> 0 an N > 0 such that | fn(z)− f (z)|< ε for
all z ∈ Γ and all n> N. Using Proposition 2.2.4.(5), we derive∣∣∣∣∫

γ

f −
∫
γ

fn

∣∣∣∣ 6 ∫
γ

∣∣ f (z)− fn(z)
∣∣ dz < `(γ) · ε.

Since `(γ) is fixed, this implies that limn→∞

∫
γ fn =

∫
γ f , as desired.

Theorem 4.4.3. Let γ : I→ C be a path with image Γ and h : Γ→ C continuous. Then
the function f : C\Γ→ C defined by

f (z) =
∫
γ

h(w)
w− z

dw
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is analytic with n-th derivative

f (n)(z) = n! ·
∫
γ

h(w)
(w− z)n+1 dw

for z ∈ C\Γ.

Proof. Since U :=C\Γ is open, there is for every z0 ∈U an r> 0 such that Dr(z0)⊂U .
Fix such z0 and r > 0. For w ∈ Γ and z ∈ Dr(z0), we define q := z−z0

w−z0
, which has

absolute value

|q| = |z− z0|
|w− z0|

<
r
r
= 1.

Thus the geometric series ∑qn converges to 1
1−q , which gives us

1
w− z

=
1

(w− z0)− (z− z0)
=

1
w− z0

· 1
1−q

=
1

w− z0
· (1 + q + q2 + · · ·).

Next we define the functions

SN(w) :=
h(w)

w− z0
·

N

∑
n=0

qn and S∞(w) :=
h(w)

w− z0
·

∞

∑
n=0

qn,

where w ∈ Γ, N ∈ N and where we consider z0 and z as fixed constants. Let M :=
max{|h(w)| | w ∈ Γ} and q0 := |z−z0|

r , which is a real number with |q|6 q0 < 1. Thus

∣∣S∞(w)−SN(w)
∣∣ = ∣∣∣∣ h(w)

w− z0
·

∞

∑
n=N+1

qn
∣∣∣∣

6
|h(w)|
|w− z0|

·
∞

∑
n=N+1

|q|n

<
M
r
·

∞

∑
n=N+1

(
|z− z0|

r

)n

=
M
r
·

qN+1
0

1−q0
−→
N→∞

0
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where the first inequality is the triangle inequality and the second inequality follows
from |q|< q0. Since the the last line of these equations does not depend on w anymore,
the convergence is uniform in w, i.e., SN(w)⇒ S∞(w). Therefore

f (z) =
∫
γ

h(w)
w− z

dw =
∫
γ

(
∞

∑
n=0

h(w)
w− z0

· qn
)

dw

=
∞

∑
n=0

( ∫
γ

h(w)
(w− z0)n+1 dw

)
· (z− z0)

n

where we apply Lemma 3.4.2 in order to exchange the infinite sum with the integral in
the third equality. The last expression is a power series around z0 with coefficients

an :=
∫
γ

h(w)
(w− z0)n+1 dw;

since it equals f (z), this power series converges for z ∈ Dr(z0). This shows that f is
analytic (recall that z0 was chosen arbitrarily). By Corollary 3.3.3, the n-th derivative of
f is

f (n)(z0) = n! ·an = n! ·
∫
γ

h(w)
(w− z0)n+1 dw,

as claimed.

Theorem 4.4.4. Let U ⊂ C be open and f : U → C holomorphic. Then f is analytic
and

f (n)(z) =
n!

2πi
·
∫

Cr(z0)

f (w)
(w− z)n+1 dw

whenever z ∈ Dr(z0) and Dr(z0)⊂U.

Proof. By Cauchy’s integral formula (Theorem 3.1.1), we have

f (z) =
1

2πi
·
∫

Cr(z0)

f (w)
w− z

dw

if z ∈ Dr(z0) and Dr(z0) ⊂ U . Theorem 3.4.3 applied to the function h(w) := f (w)
2πi

verifies that f is analytic and that

f (n)(z) =
n!

2πi
·
∫

Cr(z0)

f (w)
(w− z)n+1 dw,

as claimed.
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Corollary 4.4.5 (Taylor expansion). Let U ⊂ C be open, z0 ∈U and r > 0 such that
Dr(z0)⊂U. Let f : U → C be holomorphic and set an := 1

n! f (n)(z0). Then

f (z) =
∞

∑
n=0

an(z− z0)
n

for all z ∈ Dr(z0). In particular, ∑an(z− z0)
n converges for all z ∈ Dr(z0).

Proof. Let z ∈ Dr(z0). Then there is an s> 0 such that z ∈ Ds(z0) and Ds(z0)⊂U . By
Cauchy’s integral formula (Theorem 3.1.1), we have

f (z) =
1

2πi
·
∫

Cs(z0)

f (w)
w− z

dw

=
∞

∑
n=0

( ∫
Cs(z0)

f (w)
2πi · (w− z0)n+1 dw

)
· (z− z0)

n

=
∞

∑
n=0

an · (z− z0)
n

where we use the uniform convergence of the geometric sequence in q = z−z0
w−z0

(as
established in the proof of Theorem 3.4.3) in the second equality and the identification∫

Cs(z0)

f (w)
2πi · (w− z0)n+1 dw =

1
n!

f (n)(z0) = an

(from Theorem 3.4.4) in the third equality. This establishes the desired equality f (z) =
∑an(z− z0)

n and shows that the power series converges for all z ∈ Dr(z0).

4.5 Liouville’s theorem
Definition 4.5.1. Let U ⊂ C. A function f : U → C is bounded if there exists a bound
M ∈ R such that | f (z)|6M for all z ∈U .

Theorem 4.5.2 (Liouville). Every bounded entire function is constant.

Proof. Let f : C→ C be bounded and entire with | f (z)|6M for all z ∈ C. By Corol-
lary 3.4.5,

f (z) =
∞

∑
n=0

f (n)(0)
n!

zn

for all z ∈ C. By Theorem 3.4.4 and Proposition 2.2.4.(5), we have for all r > 0 and
n> 1 that∣∣∣∣ f (n)(0)

n!

∣∣∣∣ = ∣∣∣∣ 1
2πi
·
∫

Cr(0)

f (w)
(w−0)n+1 dw

∣∣∣∣
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6
1

2π
· `(Cr(0)) ·

M
rn+1 =

M
rn −→

r→∞
0

where we use that |w|= r since w∈ im(Cr(0)) for the first inequality. We use `(Cr(0)) =
2π · r in the last equality. This shows that

f (z) = f (0)+0 · z+0 · z2 + · · · = f (0),

i.e. f is constant.

We mention the following complementary result without proof.

Theorem 4.5.3 (Little Picard theorem). The image of a non-constant entire function is
either C or C\{b} for some b ∈ C.

4.6 The fundamental theorem of algebra
Theorem 4.6.1 (Fundamental Theorem of Algebra). Let f = ∑

d
n=0 anzn be a complex

polynomial of degree d, i.e., a0, . . . ,ad ∈ C and ad 6= 0. If d > 0, then f has a zero z0,
i.e., f (z0) = 0.

Proof. Assume that f (z) 6= 0 for all z ∈ C. Then 1
f : C→ C is entire. Then there is an

r > 0 such that for |z|> r, we have

| f (z)| > 1
2
· |ad| · |z|d > |a0| = | f (0)|.

Thus | 1f (z)| < |
1
f (0)| for |z| > r. Since Dr(0) is compact, the set { 1

f (z) | |z| 6 r} is
compact and thus bounded. In conclusion, 1

f is bounded and therefore constant by
Liouville’s theorem (Theorem 3.5.2). This shows that f (z) = a0 has degree d = 0. It
follows by contraposition that d > 0 implies that f has a zero. In conclusion, every
polynomial of positive degree has a zero.

Corollary 4.6.2. Let f = ∑
d
n=0 anzn be a complex polynomial of degree d. Then there

are c1, . . . ,cd ∈ C such that

f = ad ·
d

∏
i=1

(z− ci).

Proof. The proof is left as an exercise; cf. Exercise 3.7.6.

4.7 Exercises
Exercise 4.7.1. Let f : [a,b]→ [0,c] a continuous function where a < b and 0 < c.
Assume that

∫ b
a f (t) dt = (b−a) · c. Show that f (t) = c for all t ∈ [a,b].
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Insert an illustration

Exercise 4.7.2.
Show that polynomials are analytic functions.

Exercise 4.7.3.
Compute the Taylor expansions of f (z) = 1/(1− z) at z = 1+ i and z = 1− i.

Exercise 4.7.4.
Let A⊂ C be a subset. Let { fn : A→ C}n∈N be a sequence of continuous functions that
converges pointwise on A to f : A→ C (i.e. for all ε > 0 and z ∈ A there is an N > 0
such that | f (z)− fn(z)|< ε for all n> N).

(1) Show that f is uniquely determined as the (pointwise) limit of { fn}.
(2) Show that f is continuous if fn converges uniformly to f .

(3) Give an example of continuous functions fn : A→ C that converge pointwise to a
non-continuous function f : A→ C.

Exercise 4.7.5.
Compute the Taylor expansion ∑an(z− 1)n of g(z) = ez− e at z = 1 and show that
g(z) = ∑an(z−1)n for all z ∈ C. Show that f : C\{1} → C with f (z) = g(z)/(1− z)
extends to a holomorphic function f : C→ C. Conclude that

f (z) =
∞

∑
n=0

[
1
0!

+
1
1!

+ · · ·+ 1
n!
− e

]
zn

for all z ∈ C and, in particular, that the right hand side converges for all z ∈ C.

Exercise 4.7.6. Let f = ∑anzn be a polynomial of of degree d.

(1) Let c ∈ C be a zero of f . Show that there is a polynomial g = ∑bnzn of degree
d−1 such that f (z) = (z− c) ·g(z) for all z ∈ C.

Hint: This follows because the Taylor expansion of f at c is of degree d (why?)
and has constant coefficient 0 (why?).

(2) Conclude that there are c1, . . . ,cd ∈ C such that

f (z) = ad ·
d

∏
i=1

(z− ci)

for all z ∈ C. Show further that c1, . . . ,cd are uniquely determined up to a permu-
tation of indices.





Chapter 5

Residues

Motivation. The central result of this chapter is Cauchy’s residue theorem, which iden-
tifies the path integral of a holomorphic function along a path with an easily computable
expression. Under simplified hypotheses, the residue theorem reads as the following.

Let U ⊂ C be open, γ : I→U a path and f : U → C be holomorphic. Assume that
there is an r > 0 such that imγ ⊂ Dr(0) and such that Dr(0)\U is finite. Then∫

γ

f = 2πi ∑
c∈Dr(0)\U

W (γ,c) ·Resc( f )

where the elements of Dr(0)\U are isolated singularities of f , W (γ,c) is the winding
number of γ around c (which counts the number of times that γ circles around c in
counter-clockwise direction) and Resc( f ) is the residue of f at a, which equals the
coefficient a−1 of the Laurent expansion f = ∑

∞
n=−∞ an(z− c)n of f about c.

We will introduce all of these notions in the upcoming sections.

5.1 Singularities
Motivation. We study the behaviour of the functions

f1(z) =
ez−1

z
, f2(z) =

1
z
, f3(z) = e

1
z

when z→ 0:

(1) We have

f1(z) =
1
z
·
(

∞

∑
n=0

zn

n!
− 1

)
=

∞

∑
n=0

zn

(n+1)!
−→
z→0

1

which means that f1 extends to holomorphic function f1 : C→ C with value
f1(0) = 1. (removable singularity)

63
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(2) We have

| f2(z)| =
1
|z|

−→
z→0

∞.

(pole)

(3)

Figure 5.1: Essential singularity where a point passing through a pole at zero makes the
limit be mapped into a horizontal strip of same color

Thus f3(Dr \{0}) = C× for all r > 0. (essential singularity)

Definition 5.1.1. Let a ∈ C and r > 0. The punctured disc of radius r around a is

D•r (a) := {z ∈ C | 0< |z−a|< r}= Dr(a)\{a}.

Let U ⊂ C be open with D•r ⊂U and f : U → C a nontrivial holomorphic function
(i.e. f is not constant zero). The order of f in a is

orda( f ) := sup
{

m ∈ Z
∣∣∣∣ there is a holomorphic h : Dr(a)→ C such

that f (z) = (z−a)mh(z) for all z ∈ D•r (a)

}
,

which is, by definition, equal to −∞ if the set is empty.
We call a a zero (of order n) of f if a ∈U and if n = orda( f ) is positive.
We call a an (isolated) singularity of f if a /∈U . In this case, a is

• a removable singularity if orda( f )> 0;

• a pole (of order n) if −∞< orda( f ) =−n< 0;

• an essential singularity if orda( f ) =−∞.

We say that f extends analytically to a if there is a holomorphic function h : Dr(a)→ C
such that h(z) = f (z) for all z ∈ D•r (a).

More generally, let U ⊂V ⊂ C be open subsets of C and f : U → C a holomorphic
function. We say that f extends analytically to V if there is a holomorphic function
h : V → C such that f = h|U .
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Remark 5.1.2.

(1) If f (z) = (z−a)mh(z) for z ∈D•r (a), m ∈ Z and holomorphic h : Dr(a)→C with
h(a) 6= 0, then orda( f ) = m.

(2) The order satisfies

orda( f ·g) = orda( f )+orda(g);

orda

(
1
f

)
= −orda( f );

orda( f +g) > min{orda( f ), orda(g)};

cf. Exercise 4.8.1.

(3) If a ∈U , then orda( f )> 0 and f (z) = ∑
∞
n=0 an(z−a)n for z ∈ Dr(a). In this case,

orda( f )> 0 if and only if f (a) = 0.

(4) If a /∈U , then a is a removable singularity if and only if f extends analytically to
a.

Example 5.1.3.

(1) Let b ∈ C×. Then
f : C× −→ C

z 7−→ b

has ord0( f ) = 0 and z = 0 is a removable singularity.

(2) The function f (z) = zn has ord0( f ) = n. More generally, a power series f (z) =
∑

∞
n=0 anzn (with positive radius of convergence) has order ord0( f ) = min{i ∈ Z |

ai 6= 0}.
(3) Let u1, . . . ,ud,v1, . . . ,ve ∈ C be pairwise distinct and δ1, . . . ,δd,ε1, . . . ,εe ∈ Z>1.

Then the rational function

f (z) =
∏

d
i=1(z−ui)

δi

∏
e
i=1(z− vi)εi

has zeros ui of order δi = ordui( f ) and poles vi of order εi =−ordvi( f ).

Theorem 5.1.4 (Riemann’s theorem on removable singularities). Let U ⊂ C be open,
f : U → C holomorphic, a ∈ C a singularity of f and D•r (a)⊂U. If f |D•r (a) is bounded,
then a is a removable singularity of f .

Proof. By replacing the variable z by z̃ = z−a, we can assume that a = 0 for simplicity.
Define h : Dr(0)→ C as h(z) := z2 f (z) for z 6= 0 and h(0) := 0. Then h is complex
differentiable on D•r (0), and

h′(0) = lim
z→0

h(z)−h(0)
z−0

= lim
z→0

z2 f (z)
z

= lim
z→0

z · f (z) = 0
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where we use that f is bounded in the last equality. This shows that h : Dr(0)→ C is
holomorphic and thus equal to a power series h(z) = ∑anzn on Dr(0). Since h(0) = 0
and h′(0) = 0, we have a0 = 0 and a1 = 0. So f is equal to the power series

f (z) =
1
z2 ·h(z) = a2 +a3z+ · · ·

on D•r (0), which has order ord0( f )> 0. Therefore a = 0 is a removable singularity.

Proposition 5.1.5. Let U ⊂ C be open and f : U → C holomorphic with pole a. Then

lim
z→a
| f (z)| = ∞.

Proof. If a is a pole of order |m| (where m = orda( f )< 0), then f (z) = (z−a)mh(z) for
a holomorphic function h : Dr(a)→ C with h(a) 6= 0 for a sufficiently small punctured
disc D•r (a)⊂U . Thus

lim
z→a
| f (z)| = |h(a)| · lim

z→a
|z−a|m = |h(a)| · lim

z→a

(
1
|z−a|

)|m|
= ∞,

as claimed.

Theorem 5.1.6 (Casaroti-Weierstrass). Let f : D•r (a)→C be holomorphic with essential
singularity a ∈ C. Then f (D•r (a)) is dense in C.

Proof. We aim to lead the assumption f (D•r (a)) 6= C to a contradiction. If there is a
b ∈ C \ f (D•r (a)), then there is an s > 0 such that Ds(b)∩ f (D•r (a)) = ∅. Thus the
function g : D•r (a)→ C defined by

g(z) :=
1

f (z)−b

is holomorphic and bounded by 1
s . By Riemann’s theorem on removable singularities

(Theorem 4.1.4), g extends analytically to Dr(a). In consequence,

f (z) =
1

g(z)
+b

has order

orda( f ) > min{orda

(
1
g

)
, orda(b)}= min{−orda(g),0} > −∞,

which is a contradiction to our assumption that a is essential. We conclude that
f (D•r (a)) = C.

In fact, the image f (D•r (a)) of a punctured disc around an essential singularity a is
characterized more accurately by the following strengthening of Theorem 4.1.6, which
we state without proof.
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Theorem 5.1.7 (Great Picard theorem). Let f : D•r (a)→ C be holomorphic with essen-
tial singularity a. Then f (D•r (a)) is either C or C\{b} for some b ∈ C.

Conclusion. A singularity a of f is

removable ⇐⇒ f extends analytically to a;
a pole ⇐⇒ lim

z→a
| f (z)| = ∞;

essential ⇐⇒ f (D•r (a)) is dense in C.

5.2 Laurent expansions
Definition 5.2.1. A Laurent series (about c ∈ C) is an expression of the form

∞

∑
n=−∞

an(z− c)n =
−1

∑
n=−∞

an(z− c)n

︸ ︷︷ ︸
(principal part)

+
∞

∑
n=0

an(z− c)n

︸ ︷︷ ︸
(regular part)

with an ∈ C for n ∈ Z. The regular part ∑
∞
n=0 an(z− c)n of f is also called analytic

part and secondary part. A Laurent series ∑
∞
n=−∞ an(z− c)n converges (absolutely) at

z ∈ C if both principal and regular parts converge (absolutely) (where we consider the
principal part as a series in −n).

Let 06 s< r 6 ∞ and c ∈ C. The set

Anns,r(c) := {z ∈ C | s< |z− c|< r}

is called an (open) annulus (with center c).

Figure 5.2: Annulus is the darker shaded area

Remark 5.2.2. (1) D•r (a) = Ann0,r(a).
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(2) Let ∑an(z− c)n be a Laurent series whose principal part has radius of conver-
gence s−1 =

(
limsup n

√
|a−n|

)−1 (for n> 1) and whose regular part has radius of
convergence r =

(
limsup n

√
|an|
)−1. Then

• the principal part ∑
−1
n=−∞ an(z−c)n converges absolutely for |z−c|−1 < s−1;

• the regular part ∑
∞
n=0 an(z− c)n converges absolutely for |z− c|< r.

Thus if s< r, then the Laurent series ∑
∞
n=−∞ an(z− c)n converges absolutely for

all z ∈ Anns,r(a).

Example 5.2.3. (1) The Laurent series z−1 has s = 0 (where s−1 = ∞ is the radius of
convergence of the principal part z−1) and radius of convergence r = ∞ for the
regular part 0, thus z−1 converges absolutely on Ann0,∞(0) = C×.

(2) The Laurent series

e1/z =
∞

∑
n=0

1
n!

(1
z

)n
=

−1

∑
n=−∞

1
|n|!

zn + 1

has s = 1
∞
= 0 and r = ∞, and thus converges absolutely on Ann0,∞(0) = C×.

(3) The Laurent series
−1

∑
n=−∞

zn +
∞

∑
n=0

zn

2n

has s = 1 and r = 2, and thus converges on Ann1,2(0).

Theorem 5.2.4 (Laurent expansion on annuli). Let 0 6 s < t < r 6 ∞ and c ∈ C. Let
f : Anns,r(c)→ C be holomorphic and define

an :=
1

2πi
·
∫

Ct(c)

f (w)
(w− c)n+1 dw

for n ∈ Z. Then

f (z) =
∞

∑
n=−∞

an(z− c)n

for all z ∈ Anns,r(c). In particular, the right hand side converges for all z ∈ Anns,r(c).

Remark 5.2.5. Before we turn to the proof of the theorem, let us observe that if f
extends analytically to Dr(c), then Cauchy’s integral theorem (Theorem 2.7.8) implies
that for n6−1,

an =
1

2πi
·
∫

Ct(c)

f (z) · (z− c)|n|−1 dz = 0.

Thus f (z) = ∑
∞
n=0 an(z− c)n agrees with the Taylor expansion in this case.
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Proof. Consider z ∈ Anns,r(c) and γ0 =Cε(z) with imγ0 ⊂ Anns,r(c).

Then γ0 is closed homotopic in Anns,r(c) to γ1 =Cr′(c)+ γ̃+Cs′(c)−+ γ̃− where
|z− c|+ ε< r′ < r and s< s′ < |z− c|− ε and γ̃ is a linear path from c+ r′ to c+ s′, as
illustrated above. Thus

f (z) =
1

2πi

∫
γ0

f (w)
w− z

dw

=
1

2πi

∫
γ1

f (w)
w− z

dw

=
1

2πi

( ∫
Cr′(c)

f (w)
w− z

dw +
∫
γ̃

f (w)
w− z

dw −
∫

Cs′(c)

f (w)
w− z

dw −
∫
γ̃

f (w)
w− z

dw
)

=
1

2πi

( ∫
Cr′(c)

f (w)
w− z

dw −
∫

Cs′(c)

f (w)
w− z

dw
)

where the first equality follows from Cauchy’s integral formula (Theorem 3.1.1) and
the second equality follows from Cauchy’s integral theorem (Theorem 2.7.4). As in the
proof of Theorem 3.4.3, we compute∫

Cr′(c)

f (w)
w− z

dw =
∫

Cr′(c)

f (w)
w− c

· 1
1− z−c

w−c
dw

=
∫

Cr′(c)

f (w)
w− c

·
∞

∑
n=0

(
z− c
w− c

)n

dw

=
∞

∑
n=0

( ∫
Ct(c)

f (w)
(w− c)n+1 dw

)
· (z− c)n

= 2πi
∞

∑
n=0

an(z− c)n
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where z−c
w−c ∈ D1(0) for w ∈ imCr′(c) and therefore ∑

∞
n=0
( z−c

w−c

)n converges absolutely,
which allows us to exchange the integral and summation by Lemma 3.4.2. Since

f (w)
(w−c)n+1 is defined for all w ∈ Anns,r(c), we can use Cauchy’s integral theorem (for
closed homotopies, Theorem 2.7.4) to exchange Cr′(c) by Ct(c) without changing the
value of the path integral in the third equality.

Similarly we have

−
∫

Cs′(c)

f (w)
w− z

dw =
∫

Cs′(c)

f (w)
z− c

· 1
1− w−c

z−c
dw

=
∫

Cs′(c)

f (w)
z− c

·
∞

∑
n=0

(
w− c
z− c

)n

dw

=
∞

∑
n=0

( ∫
Ct(c)

f (w)
(w− c)−n dw

)
· (z− c)−(n+1)

=
−1

∑
n=−∞

( ∫
Ct(c)

f (w)
(w− c)n+1 dw

)
· (z− c)n

= 2πi
−1

∑
n=−∞

an(z− c)n

since w−c
z−c ∈ D1(0) for w ∈ imCs′(c), and where we use exchange n by −(n+1) in the

fourth equality. Putting the regular and principal part together yields

f (z) =
1

2πi

( ∫
Cr′(c)

f (w)
w− z

dw −
∫

Cs′(c)

f (w)
w− z

dw
)

=
∞

∑
n=−∞

an(z− c)n,

as claimed. In particular, this shows that ∑an(z−c)n converges for all z∈Anns,r(c).

Definition 5.2.6. Let U ⊂ C be open, f : U → C holomorphic, c ∈ C, 0 < t < r and
D•r (c)⊂U . Then f (z) = ∑n∈Z an(z− c)n with

an :=
1

2πi

∫
Ct(c)

f (w)
(w− c)n+1 dw

is called the Laurent expansion of f at c.

Remark 5.2.7. (1) The equality f (z) = ∑an(z− c)n for z ∈ Anns,r(c) (as in Theo-
rem 4.2.4) determines the coefficients an uniquely; cf. Exercise 4.8.5.

(2) The Laurent expansions of Theorem 4.2.4 of the same function can differ for annuli
Anns,r(c) and Anns′,r′(c) with empty intersection Anns,r(c)∩Anns′,r′(c) =∅. For
example,

1
1− z

=
∞

∑
n=0

zn
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for z ∈ D•1(0) = Ann0,1(0), and

1
1− z

= −1
z
· 1

1− 1
z

= −1
z
·

∞

∑
n=0

(
1
z

)n

=
−1

∑
n=−∞

(−1) · zn

for z ∈ Ann1,∞(0).

Proposition 5.2.8. Let c ∈ C, r > 0 and f : D•r (c)→ C be a nontrivial holomorphic
function with Laurent expansion f (z) = ∑an(z− c)n at c. Then

ordc( f ) = inf{n ∈ Z | an 6= 0}.

Proof. If m = ordc( f ) 6=−∞, then

f (z) = (z− c)m
∞

∑
n=0

ãn(z− c)n =
∞

∑
n=m

an(z− c)n

for z ∈ D•r (c) and ãn−m = an where am = ã0 6= 0. Thus

ordc( f ) = m = inf{n ∈ Z | an 6= 0},

as claimed.
If ordc( f ) =−∞, then there is no m ∈ Z such that

h(z) = (z− c)−m
∞

∑
n=−∞

an(z− c)n

extends analytically to c. Thus

ordc( f ) = −∞ = inf{n ∈ Z | an 6= 0}.

5.3 Residues
Definition 5.3.1. Let U ⊂ C be open, f : U → C holomorphic, D•r (c) ⊂U (for some
r > 0 and c ∈ C) and f (z) = ∑an(z− c)n the Laurent expansion of f at c. The residue
of f at c is

Resc f = a−1.

Remark 5.3.2. The relevance of the residue becomes apparent in the formula∫
Ct(c)

f = 2πi · Resc f

for 0< t < r, which follows at once from the definition of the residue and Theorem 4.2.4.

We study some methods to compute the residue: First of all note that if c ∈U , then
∑an(z− c)n is a power series and thus Resc f = 0. If c is a pole, then we can compute
the residue in terms of derivatives as follows.
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Lemma 5.3.3. Let U ⊂ C be open, f : U → C holomorphic and D•r (c) ⊂U. Assume
that c is a pole of f of order m> 1. Then

Resc f =
1

(m−1)!
· dm−1

dzm−1

[
(z− c)m f (z)

]
z=c
.

Proof. By Proposition 4.2.8, −m is the index of the smallest non-vanishing coefficient
a−m 6= 0 of the Laurent expansion f (z) = ∑an(z− c)n of f at c. Thus

(z− c)m f (z) = a−m + a−m+1(z− c) + · · · + a−1(z− c)m−1 + · · ·

has derivative

dm−1

dzm−1

[
(z− c)m f (z)

]
z=c

= (m−1)! · a−1 = (m−1)! · Resc f

at z = c.

Remark 5.3.4. In fact, the same reasoning applies to any other coefficient of the Laurent
expansion of f at c, under the assumption that −m = ordc( f ) 6=−∞ (cf. Exercise 4.8.7).
Then we have

ak =
1

(m+ k)!
· dm+k

dzm+k

[
(z− c)m f (z)

]
z=c

for k >−m.

Example 5.3.5. The rational function f : C\{0,1}→ C with

f (z) =
1

z2(z−1)

has ord0( f ) =−2 and ord1( f ) =−1. By Lemma 4.3.3, we have

Res0 f =
1
1!
· d

dz

[
(z−0)2 1

z2(z−1)

]
z=0

=
d
dz

[
1

z−1

]
z=0

=

[
−1

(z−1)2

]
z=0

= −1

and

Res1 f =
1
0!
· d0

dz0

[
(z−1)1 1

z2(z−1)

]
z=1

=

[
1
z2

]
z=1

= 1.

Thus by Remark 4.3.2, we have∫
C1/2(0)

f = −2πi and
∫

C1/2(1)

f = 2πi.
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5.4 The residue theorem
Definition 5.4.1. Let γ : I→ C be a closed path and c ∈ C\ imγ. The winding number
of γ around c is

W (γ,c) =
1

2πi

∫
γ

1
w− c

dw.

Example 5.4.2. Let γi : I→C (for i= 1,2) be given by γ1(t) = e2πi·t and γ2(t) = e−4πi·t :

Figure 5.3: Since γ2 moves in the opposite direction than γ1 the winding number around
0 is negative

Then

W (γ1,0) = 1, W (γ1,2) = 0 and W (γ2,0) = −2.

Remark 5.4.3. The winding number satisfies the following properties:

(0) If γ is a constant path, then W (γ,c) = 0 for any c ∈ C\ imγ.

(1) The winding number is an integer W (γ,c) ∈ Z for any γ : I→ C and c ∈ C\ imγ.

(2) If γ− is the inverse path to γ (defined by γ−(t) = γ(1− t)). Then

W (γ−,c) = −W (γ,c).

(3) Let γ = γ1+ · · ·+γn be the concatenation of n closed paths γ1, . . . ,γn and assume
that c /∈ imγi for all i = 1, . . . ,n. Then

W (γ,c) =
n

∑
i=1

W (γi,c).

(4) If γ0 ∼ γ1 are closed homotopic in C\{c}, then

W (γ0,c) = W (γ1,c).

Theorem 5.4.4 (Residue theorem). Let V ⊂ C be open and U = V \ {c1, . . . ,cs} for
pairwise distinct points c1, . . . ,cs ∈V . Let γ : I→U be a closed path that is contractible
in V . Let f : U → C be a holomorphic function. Then∫

γ

f = 2πi ·
s

∑
i=1

W (γ,ci) · Resci f .
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Proof. We restrict ourselves to the case that none of the ci are an essential singularity of
f since the proof for essential singularities is more complicated.

For i = 1, . . . ,s, let

f (z) =
∞

∑
n=mi

ai,n(z− ci)
n

be the Laurent expansion of f at ci where mi = ordci( f )>−∞. Note that its principal
part ∑

−1
n=mi

ai,n(z− ci)
n defines a holomorphic function on C\{ci}. Since the Laurent

expansion of

g(z) = f (z) −
s

∑
i=1

−1

∑
n=mi

ai,n(z− ci)
n

at each of c1, . . . ,cs is a power series by construction, the holomorphic function g :U→C
extends analytically to V . Since γ is contractible in V , we have

∫
γ g = 0 by Cauchy’s

integral theorem (Theorem 2.7.6). Thus

∫
γ

f =
s

∑
i=1

−1

∑
n=mi

ai,n

∫
γ

(w− ci)
n dw

=
s

∑
i=1

ai,−1

∫
γ

(w− ci)
−1 dw

= 2πi ·
s

∑
i=1

W (γ,ci) · Resci f .

where we use that
∫
γ(w− ci)

n dw = 0 for n 6=−1 in the second equality, and insert the
definitions of the winding number and the residue in the last equality.

Example 5.4.5. We continue Example 4.3.5: consider the rational function given by

f (z) =
1

z2(z−1)

and the path γ : I→ C given by

γ(t) =

{
1
2 + e4πi·t for 06 t 6 1

2 ;
1+ 1

2 · e
4πi·t for 1

2 < t 6 1.
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Figure 5.4: The winding number around zero is 1 since we only go around it once, but
around 1 we circle two times, hence the winding number is 2.

Then, with the notation as in Theorem 4.4.4, we let V = C and U = C\{0,1} to get

∫
γ

f = 2πi
(

W (γ,0) ·Res0 f + W (γ,1) · Res1 f
)

= 2πi · (1 · (−1) + 2 ·1) = 2πi.

5.5 The argument principle
Definition 5.5.1. Let U ⊂C be open and f : U→C holomorphic. Let S := f−1(0)⊂U
be the set of zeros of f . The logarithmic derivative of f is the holomorphic function

f ′

f
: U \S −→ C.

Remark 5.5.2.

(1) Let logα be any branch of the logarithm and assume that U \S⊂Uϑ for ϑ= eiα.
Then

f ′(z)
f (z)

=
d
dz

logα f (z)

for all z ∈U \S.

(2) Assume that g : U \S→ C is holomorphic and without zeros. Then

( f g)′

f g
=

f ′g+ f g′

f g
=

f ′

f
+

g′

g

as functions on U \S, i.e. the logarithmic derivative of a product of functions is
the sum of the logarithmic derivatives of the factors.
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Proposition 5.5.3. Let f : D•r (c)→ C be holomorphic. Assume that ordc( f ) 6=−∞ and
that f (z) 6= 0 for all z ∈ D•r (c). Then there is a holomorphic function g : Dr(c)→ C
such that

f ′

f
(z) =

ordc( f )
z− c

+ g(z)

for all z ∈ D•r (c). In particular, ordc( f ) = Resc( f ′/ f ).

Proof. Let and f (z) = ∑an(z− c)n the Laurent expansion of f at c and m = ordc( f ).
By Proposition 4.2.8,

f ′(z) = m ·am(z− c)m−1 + · · ·

has ordc( f ′)> m−1, and thus by Remark 4.1.2 we have

ordc( f ′/ f ) = ordc( f ′) − ordc( f ) > m−1−m = −1.

By the definition of ordc( f ), there exists a holomorphic function h : Dr(c)→ C with

f (z) = (z− c)m · h(z)

for all z ∈ D•r (c). Since neither f (z) nor (z− c)m has a zero in D•r (c), also h does not
have a zero in D•r (c). Thus g = h′

h is holomorphic on D•r (c), and

f ′

f
=

(
(z− c)mh

)′
(z− c)mh

=
m(z− c)m−1

(z− c)m +
h′

h
=

ordc( f )
z− c

+ g

where we use Remark 4.5.2 in the second equality and m = ordc( f ) in the third equality.
This concludes the proof of the first claim. The second claim follows from the fact that
the Laurent expansion of f ′

f at c is of the form

ordc( f ) · (z− c)−1 +
∞

∑
n=0

bn(z− c)n

where g(z) = ∑
∞
n=0 bn(z− c)n is the Taylor expansion of g at c.

Theorem 5.5.4 (The argument principle). Let U ⊂ V ⊂ C be open subsets such that
S =V \U is finite. Let f : U → C be a nontrivial holomorphic function with ordc( f ) 6=
−∞ for all c ∈ S. Let γ : I→U be a closed path that is contractible in V and such that
f (γ(t)) 6= 0 for all t ∈ I. Then

∑
c∈S∪{zeros of f}

W (γ,c) · ordc( f ) =
1

2πi
·
∫
γ

f ′

f
= W ( f ◦γ,0).
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Figure 5.5: Closed path maps to closed path

Proof. This follows from the direct computation

∑
c∈S∪{zeros of f}

W (γ,c) · ordc( f ) = ∑
c∈S∪{zeros of f}

W (γ,c) · Resc
f ′

f

=
1

2πi
·
∫
γ

f ′

f

=
1

2πi
·
∫
γ

1
f
· d f

dz
dz

=
1

2πi
·
∫

f◦γ

1
w

dw

= W ( f ◦γ,0),

whose first equality holds by Proposition 4.5.3, whose second equality holds by the
residue theorem (Theorem 4.4.4) and whose fourth equality follows from a variable
substitution of z by w = f (z).

Example 5.5.5. Consider γ =Cr(0), V =C, U =C×, and f (z) = zn. Then ord0( f ) = n
and the closed path f ◦Cr(0) : I→ C (given by t 7→ rn · e2πi·nt) circles n-times counter-
clockwise around 0. Thus we find back the result of the argument principle (Theo-
rem 4.5.4):

W ( f ◦Cr(0),0) = n = 1 · n = W (Cr(0),0) · ord0( f ).

We can also determine the third quantity explicitly as

1
2πi

∫
Cr(0)

f ′

f
=

1
2πi

∫
Cr(0)

n
z

dz =
2πi ·n

2πi
= n

in this case.

Definition 5.5.6. Let γ : I→ C be a closed path and U = C\ imγ. The interior of γ is
the union γint of all bounded connected components of U .
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Figure 5.6: Shaded in pink is the union of γ interior components

Remark 5.5.7.

(1) Since imγ is bounded, γint is bounded and U = C\ imγ has precisely one con-
nected component that is unbounded.

(2) If W (γ,z) 6= 0 for z ∈U , then z ∈ γint.

(3) It follows from Theorem 5.1.3 (proven later) that the set S0 of zeros of a holomor-
phic function f is discrete. So S0∩γint is finite. Similarly, the set of poles of f
inside γint is finite.

Corollary 5.5.8. Let U ⊂V ⊂C be open subsets, f : U→C holomorphic and γ : I→U
be a closed path that is contractible in V . Assume that f (γ(t)) 6= 0 for all t ∈ I, that
W (γ,z) = 1 for all z ∈ γint, that V \U is finite, and that ordc( f ) 6=−∞ for all c ∈V \U.
Define

N(0) = ∑
zeros c∈γint

ordc( f ) and N(∞) = ∑
poles c∈γint

|ordc( f )|.

Then
N(0) − N(∞) = W ( f ◦γ,0).

Proof. This follows at once from the definitions of N(0) and N(∞), the assumption that
W (γ,z) = 1 for z ∈ γint, and the argument principle (Theorem 4.5.4):

N(0) − N(∞) = ∑
c∈γint with
ordc( f )6=0

W (γ,z) ·ordc( f ) = W ( f ◦γ,0).

Remark 5.5.9. Note that the set S in Corollary 4.5.8 is the set of zeros and isolated
singularities of f in the interior of γ. Since we exclude essential singularities, S contains
only zeros, poles, and possibly removable singularities. The quantities N(0) and N(∞)
are the number of zeros and poles of f , respectively, counted with multiplicities.

Note that by Theorem 5.1.3 (as proven later) that the set of zeros of a holomorphic
function f : U → C is discrete. Since γint is bounded (cf. Remark 4.5.7), f has only
finitely many zeros in γint. So the hypothesis that S (as defined in the theorem) is finite
is automatic if we assume that V \U is finite.
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5.6 Rouché’s theorem
Theorem 5.6.1 (Rouché’s theorem). Let U ⊂ C be open, f ,g : U → C holomorphic
and γ : I→U a closed path that is contractible in U and such that W (γ,z) = 1 for all
z ∈ γint. If ∣∣ f (γ(t))−g(γ(t))

∣∣ < ∣∣g(γ(t))∣∣
for all t ∈ I, then

∑
c∈γint

ordc( f ) = ∑
c∈γint

ordc(g).

Remark 5.6.2. As explained in Remark 4.5.9, the number of zeros and poles of f and g
in γint is finite, so the sums in Rouché’s theorem are finite (and thus well-defined) if we
ignore the zero terms.

In fact, since γ is contractible in U , f does not have a singularity in γint, and thus
ordc( f ) > 0 for all c ∈ γint. This means that Rouché’s theorem expresses an equality
between the zeros of f and the zeros of g, when counted with multiplicities.

Proof. We define the continuous function

H : [0,1]×U −→ C
(t,z) 7−→ Ht(z) := g(z)+ t( f (z)−g(z))

(a homotopy from g = H0 to f = H1). By the triangle inequality, we have

|a+b| + |b| = |a+b| + |−b| > |a+b−b| = |a|,

and thus |a+b|> |a|− |b|. Applying this to a = g(z) and b = t( f (z)−g(z)) yields for
all z ∈ imγ and t ∈ I that

|Ht(z)| =
∣∣g(z)+ t( f (z)−g(z))

∣∣ > |g(z)| − |t| · | f (z)−g(z)|
> |g(z)| − | f (z)−g(z)| > 0,

where the second inequality follows from |t|6 1 and the last inequality follows from
the hypothesis that | f (z)−g(z)|< |g(z)| for all z ∈ imγ.
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This shows that Ht(z) 6= 0 for all t ∈ I and z ∈ imγ. Therefore Theorem 4.5.4 applies
and yields (for any fixed t ∈ I)

N(t) := ∑
c∈γint

ordc(Ht) = W (Ht ◦γ,0) =
1

2πi
·
∫

Ht◦γ

1
w

dw

which is an integer that is independent of t by Cauchy’s integral theorem (Theorem 2.7.4)
since Ht ◦γ : I→ C× is a closed homotopy in C×, the domain of 1

w . Thus

∑
c∈γint

ordc( f ) = N(1) = N(0) = ∑
c∈γint

ordc(g),

as claimed.

As an application, we find another short proof of the fundamental theorem of algebra
(Theorem 3.6.1).

Theorem 5.6.3. Every complex polynomial of positive degree has a zero.

Proof. Consider a complex polynomial f = adzd + · · ·+a1z+a0 of degree d> 1. Define
g = adzd and let r > 0 be sufficiently large, so that

| f (z)−g(z)| = |ad−1zd−1 + · · ·+a0| < |adzd| = |g(z)|

for all z ∈ imCr(0). Then

∑
c∈Cr(0)int

ordc( f ) = ∑
c∈Cr(0)int

ordc(g) = ord0(g) = d

by Rouché’s theorem (Theorem 4.6.1), which shows that f has d > 0 zeros, counted
with multiplicities.

Example 5.6.4. In fact, the method of the preceding proof provides a constructive
method to narrow down the location of the zeros of a complex polynomial. We demon-
strate this in the following example of the polynomial f = z5 +4z+2.

(1) Let g = z5. Then for |z|= 2, we have

| f (z)−g(z)| = |4z+2| 6 4 · |z|+2 = 10 < 32 = |z|5 = |g(z)|,

which allows us to apply Rouché’s theorem to conclude that

∑
|c|<2

ordc( f ) = ord0(g) = 5.

Thus all 5 zeros of f (counted with multiplicities) lie inside the open disc D2(0).
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(2) Let g̃(z) = 4z. Then for |z|= 1, we have

| f (z)− g̃(z)| = |z5 +2| 6 |z|5 +2 < 4 = 4 · |z| = |g̃(z)|.

Thus by Rouché’s theorem, we have

∑
|c|<1

ordc( f ) = ord0(g̃) = 1,

which shows that f has precisely one simple zero (multiplicity 1) in the open disc
D1(0).

Figure 5.7: Open disc with r = 1 with one zero inside and open disc with r = 2 with
five zeros inside

5.7 The open mapping principle
Let U ⊂ C be open. A holomorphic function f : U → C is locally non-constant if for
every open disc Dr(a) that is contained in U , the restriction of f to Dr(a) is non-constant.

Theorem 5.7.1 (open mapping principle). Let U ⊂ C be open and f : U → C holomor-
phic and locally non-constant. Then f (U) is open.

Proof. The image f (U) is open if for every a ∈U and b = f (a), there is an ε> 0 such
that Dε(b)⊂ f (U).

To find such an ε, we define for fixed a ∈ U and b = f (a) the function fb(z) =
f (z)− b. Since fb(a) = 0, we have that m = orda( fb) > 1. Let r > 0 be such that
Dr(a) is contained in U . By the definition of orda( fb), there is a holomorphic function
g : Dr(a)→ C with g(a) 6= 0 and

fb(z) = (z−a)m ·g(z)

for all z ∈ Dr(a). Since g is continuous, there is an s ∈ (0,r) such that g(z) 6= 0 for all
z ∈ Ds(a). Since ∂Ds(a) = {z ∈ C | |z−a|= s} is compact, | fb| assumes its minimum
on ∂Ds(a). Now set

ε := min
{
| fb(z)|

∣∣ |z−a|= s
}
> 0.
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Note that ε > 0 is guaranteed since (z−a)m 6= 0 and g(z) 6= 0 for all z ∈ ∂Ds(a). We
claim that Dε(b)⊂ f (U), which implies that f (U) is open.

Consider w ∈ Dε(b). For |z−a|= s, we have∣∣( f (z)−w)− fb(z)
∣∣ = |w−b| < ε 6 | fb(z)|.

It then follows by Rouché’s theorem (Theorem 4.6.1) that

∑
|c−a|<s

ordc( f (z)−w) = ∑
|c−a|<s

ordc( fb) > 0.

Since fb(a) = 0, we hence have f (z)−w = 0 for some z ∈ Ds(a). Thus w = f (z) is in
f (U), which shows that Dε(b)⊂ f (U) as claimed.

As a consequence of the open mapping principle, we can remove the hypothesis that
the inverse of a holomorphic bijection is continuous from the inverse function theorem
(Theorem 1.2.5).

Theorem 5.7.2 (inverse function theorem). Let U and V be open subsets of C and
f : U →V a holomorphic bijection with inverse bijection g : V →U. If f ′(a) 6= 0 for all
a ∈U, then g is holomorphic with derivative

g′(b) =
1

f ′(g(b))

for all b ∈V .

Proof. Since f ′(a) 6= 0 for all a ∈U , f is locally non-constant. Thus g−1(W ) = f (W )
is open for every open subset W ⊂U by the open mapping principle (Theorem 4.7.1),
which shows that g is continuous. Thus the theorem follows from Theorem 1.2.5.

5.8 Exercises
Exercise 5.8.1. Let z∈C and r> 0 and f ,g : D•r (a)→C be holomorphic and nontrivial.
Assume that orda( f ),orda(g) ∈ Z. Show that

orda( f ·g) = orda( f )+orda(g);

orda(
1
f
) = −orda( f );

orda( f +g) > min{orda( f ), orda(g)}.

What happens if orda( f ) =−∞?

Exercise 5.8.2. Let f : D•r (a)→ C be holomorphic. Show that a is a removable singu-
larity if and only if f extends analytically to a.

Exercise 5.8.3. Let f be a polynomial of degree d and a∈C. Show that 06 orda( f )6 d.
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Exercise 5.8.4. Prove all claims of Example 4.1.3.

Exercise 5.8.5 (Uniqueness of Laurent expansions). Let f : Anns,r(c)→ C be given as

f (z) =
∞

∑
n=−∞

an (z− c)n

where we assume that the Laurent series on the right hand side converges for all z ∈
Anns,r(c). Prove that

an =
1

2πi

∫
Ct(c)

f (w)
(w− c)n+1 dw

for any t ∈ (s,r) and conclude that the coefficients an are uniquely determined by f (as
a function on Anns,r(c)).

Hint: Replace f (w) by ∑an(w− c)n in the above integral and use that the partial sums
converge uniformly to f for w ∈ imCt(c), which allows you to interchange the integral
and the infinite sum.

Exercise 5.8.6. Consider the rational function f (z) = z
z3−1 .

(1) Show that z(z−1)
z3−1 has a removable singularity at 1. Simplify this expression to find

a rational function g(z) that is holomorphic at 1 and such that f (z) = 1
z−1 ·g(z) for

all z ∈ C\{poles of f}.
(2) Determine the terms b0 and b1 of the Taylor expansion g = ∑

∞
n=0 bn(z−1)n of g

at 1.

(3) Derive the terms a−1 and a0 of the Laurent expansion f = ∑
∞
n=−1 an(z−1)n of f

at 1.

Exercise 5.8.7. Prove the formula of Remark 4.3.4: let f : D•r (c)→ C be holomorphic
with Laurent expansion f (z) = ∑an(z− c)n at c and assume that −m = ordc( f ) 6=−∞.
Then for k >−m, we have

ak =
1

(m+ k)!
· dm+k

dzm+k

[
(z− c)m f (z)

]
z=c
.

Exercise 5.8.8. Prove all claims of Remark 4.4.3.

Exercise 5.8.9 (Geometric intepretation of the winding number). Let γ : I→ C\{0}
be a closed path and define γ̃ : I→ C\{0} by

γ̃(t) =
γ(t)
|γ(t)|

.

(1) Find a closed homotopy from γ to γ̃ in C\{0}.
(2) Show that γ̃(t) = e2πi·α(t) for a continuous map α : I→ R with α(1)−α(0) ∈ Z.
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(3) Let n = α(1)−α(0). Use α to construct a closed homotopy from γ̃ to the n-fold
circle γn(t) = e2πi·nt .

(4) Conclude that W (γ,0) =W (γn,0) = n.

Remark: The same arguments work for any point z0 ∈C\ imγ. We have assumed z0 = 0
in this exercise merely for simplicity.

Bonus question: Explain why Theorem 4.5.4 is called the argument principle. This is,
how does W ( f ◦γ,0) relate to the argument of f ◦γ?

Exercise 5.8.10. Consider the rational function f (z) = z
z3−1 .

(1) Determine all zeros and poles of f , including their respective orders.

(2) Compute the residue of f at each pole.

(3) Let γr = {1+ reit | t ∈ [0,2π]} for r = 1,2. Determine which poles of f are in its
interior for r = 1,2.

(4) Compute ∫
γr

z
z3−1

dz

for r = 1,2.

Exercise 5.8.11. Prove all claims of Remark 4.5.2.

Exercise 5.8.12. Show that all zeros of the polynomial f (z) = z5 +7z3 +10z+1 lie in
the open disc D3(0). How many zeros (counted with multiplicities) lie in D1(0) and in
the annuli Ann1,2(0) and Ann2,3(0)?

Exercise 5.8.13 (Symmetric version of Rouché’s theorem). Prove the following stronger
version of Rouché’s theorem (and think about why it implies Rouché’s theorem):

Let U ⊂ C be open, f ,g : U → C holomorphic and γ : I→U be a closed path that
is contractible in U and such that W (γ,z) = 1 for all z ∈ γint. If∣∣ f (γ(t))−g(γ(t))

∣∣ < ∣∣ f (γ(t))∣∣ + ∣∣g(γ(t))∣∣
for all t ∈ I, then

∑
c∈γint

ordc( f ) = ∑
c∈γint

ordc(g).

Hint: You can find an outline of the proof on the Wikipedia page on Rouché’s theorem.

https://en.wikipedia.org/wiki/Rouch%C3%A9%27s_theorem#Symmetric_version
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Further topics

6.1 Analytic continuation
Definition 6.1.1. Let A ⊂ C be a subset. An accumulation point of A is an element
a ∈ C such that D•ε(a)∩A 6=∅ for every ε> 0.

Remark 6.1.2. (1) In general, an accumulation point a of A might be in A or not.

(2) The closure A of A equals the union of A with all of its accumulation points.

(3) If {zn}n∈N is a sequence that converges to a, then a is an accumulation point of
the set A = {zn}. Conversely, if a is an accumulation point of A, then there exists
a sequence {zn}n∈N in A that converges to a.

(4) A subset A⊂ C is discrete if and only if it has no accumulation points.

(5) A subset A ⊂ C is dense if and only if every element of C is an accumulation
point of A.

Recall that a domain is an open and connected subset of C.

Theorem 6.1.3. Let U be a domain and f : U → C holomorphic and non-trivial. Then
Z = {z ∈ C | f (z) = 0} is discrete.

Proof. Assume that Z is not discrete. Then the set A⊂U of accumulation points of Z
in U is non-empty. Consider a ∈ A and a sequence {zn}n∈N in Z with limit a. Since f is
continuous, we have

f (a) = lim
n→∞

f (zn) = 0,

which shows that a ∈ Z. Thus A ⊂ Z, meaning that an accumulation point of A is an
accumulation point of Z, and therefore is contained in A. We conclude that A = A is
closed in U .

Consider c ∈ A and the Taylor expansion f (z) = ∑an(z− c)n at c (for z ∈ Dr(c) and
suitable r > 0 so that Dr(c)⊂U). We prove by induction on n that an = 0 for all n ∈ N.

85
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The base case n = 0 follows from the fact that a0 = f (c) = 0 (since c ∈ A⊂ Z). Let
n> 0 and assume that a0 = . . .= an−1 = 0. Then

fn(z) =
f (z)

(z− c)n =
∞

∑
k=0

an+k(z− c)k

defines a holomorphic function on Dr(c) with fn(z) = 0 for every z ∈ D•r (c)∩Z. Since
c is an accumulation point of Z, and thus of D•r (c)∩ Z, we conclude as before that
an = fn(c) = 0, which concludes the induction.

We conclude that Dr(c)⊂ A, which shows that A is open. Since U is connected and
since A is open and closed in U , we conclude that A =U . Thus f is constant 0, which
contradicts our assumptions.

Theorem 6.1.4. Let U ⊂ C be a domain f ,g : U → C holomorphic, and {zn}n∈N a
sequence in U that converges to a ∈U \{zn}n∈N. If f (zn) = g(zn) for all n ∈ N, then
f = g as functions.

Proof. Since ( f −g)(zn) = 0 for all n∈N, the set {z∈U | ( f −g)(z) = 0} is not discrete
in U since it has an accumulation point. Thus by Theorem 5.1.3, f −g is constant 0, i.e.
f = g.

Remark 6.1.5. The hypothesis of Theorem 5.1.4 could be exchanged by either of the
following:

(1) {zn} converges to a point a ∈U with #{zn}= ∞ and f (zn) = g(zn) for all n ∈ N;

(2) A⊂U is a subset with an accumulation point a ∈U and f (z) = g(z) for all z ∈ A.

Definition 6.1.6. Let U ⊂ C be open, A ⊂U a subset and f : A→ C a function. An
analytic continuation of f to U is a holomorphic function f̂ : U → C whose restriction
to A equals f .

Note that f extends analytically to U (in the sense of Definition 4.1.1) if and only if
it has an analytic continuation to U .

We now prove that analytic continuations are unique.

Corollary 6.1.7. Let U be a domain, A⊂U a subset with an accumulation point a ∈U
and f : A→ C a function. Then f has at most one analytic continuation to U.

Proof. Since A has an accumulation point a, it contains a sequence {zn}n∈N that con-
verges to a, yet zn 6= a for any n ∈ N. Any two analytic continuations of f to U agree on
{zn}, as a subset of the domain of f . By Theorem 5.1.4, the two analytic continuations
are equal.

Remark 6.1.8. In the light of Corollary 5.1.7, we can revisit the extensions of real
valued analytic functions to holomorphic functions.

Let U be a domain, A a non-empty open subset of R that is contained in U and
f : A→ R a function; such as A = R and U = C, or A = R>0 and U =U−1 = {z ∈ C |
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z /∈R60}. As an open subset of R, A has an accumulation point. Thus by Corollary 5.1.7,
f has at most one analytic continuation to U .

This re-establishes the holomorphic functions

exp : C→ C, sin : C→ C, cos : C→ C, log : U−1→ C

as the unique analytic continuations of the corresponding real valued functions.

Recipe for analytic continuation. In the following, we explain a strategy for the
construction of an analytic continuation of a given holomorphic function f : V → C
(where V ⊂C is open) to a point w ∈C (typically not in V ), by the means of following a
path γ : I→C from a point γ(0) ∈V to γ(1) = w. We say that f̂ : U →C is an analytic
continuation of f along γ if U contains V ∪ imγ.

Insert an illustration

We aim at extending f iteratively to holomorphic functions fi : Ui→ C (for i> 0).
As our initial definition (for i = 0), we use t0 = 0, U0 =V and f0 = f .

Let i> 0 and assume that we have constructed an analytic continuation fi−1 : Ui−1→
C of f to an open superset Ui−1 of U that contains γ([0, ti−1]) for some ti−1 ∈ I. Since
Ui−1 is open, we can choose a ti ∈ I with ti > ti−1 and γ([0, ti])⊂Ui−1. Define ci = γ(ti)
and consider the Taylor expansion

f (z) =
∞

∑
n=0

ai,n(z− ci)
n

of f at ci. Let ri be the radius of convergence of this power series, i.e., ∑ai,n(z− ci)
n

converges for z ∈ Dri(ci) and defines a holomorphic function on this disc, which agrees
with fi−1 for z ∈ Dri(ci)∩Ui−1. We define Ui =Ui−1∪Dri(ci) and

fi : Ui −→ C

z 7−→

{
fi−1(z) if z ∈Ui−1,

∑ai,n(z− ci)
n if z ∈ Dri(ci),

which is an analytic continuation of fi−1, and thus of f , to Ui.
This iteration produces a sequence of open subsets V = U0 ⊂ . . . ⊂Ui ⊂ . . . and

analytic continuations fi : Ui→ C of f .
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Our hope is that eventually w = γ(1) ∈Um for some m. In this case, fm : Um→ C is
an analytic continuation of f to w along γ.

It is, however, not guaranteed that this strategy produces an analytic continuation
to w, which depends on f and on a “good” choice of path γ (cf. Exercise 5.2.1). The
choices of the ti are of minor relevance (one merely has to avoid that {ti} forms a
converging sequence; cf. Exercise 5.2.2); in particular, the value at w of the analytic
continuation of f along γ does not depend on the choices of the ti. Moreover, the value
at w ∈Um does not change if we replace γ by a path γ̃ that is homotopic to γ in Um (rel.
to {0,1}); cf. Exercise 5.2.2.

Note further that the value of f (w) depends in general on the choice of path, provided
that our strategy has success (cf. Example 5.1.9).

Example 6.1.9. Consider the restriction log : V → C of the principal branch of the
logarithm to V = {z∈C |Rez> 0}. In the following, we construct analytic continuations
to −1, following the half-circles

γ+ : I −→ C
z 7−→ eπi·t and

γ− : I −→ C
z 7−→ e−πi·t

through the upper and lower halfplane, respectively, as illustrated as follows:
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We see that we can extend log to −1 along both path, but that the value at −1
depends on the chosen path: in the first case, we get −1 7→ πi, and in the second case,
we get −1 7→ −πi.

6.2 Exercises
Exercise 6.2.1. Consider f : V → C with V = {z ∈ C | Rez> 0} and f (z) = 1

z and the
path γ : I → C from 1 to −1 with γ(t) = 1− 2t. Show that the Taylor expansion of
f at c = γ(t) does not converge for z = 0 for any t < 1/2. Conclude that the strategy
for analytic continuation from section 5.1 does not succeed to provide an analytic
continuation of f that is defined in −1.

What happens in the case of log : V → C for the same choice of V and γ (cf.
Example 5.1.9)? Does log extend to −1 along γ?

Exercise 6.2.2. Let f : V → C be a holomorphic function and γ : I→ C a path from
γ(0) ∈V to w = γ(1). Let f̂ : U → C be an analytic continuation along γ.

(1) Show that under these hypothesis, the strategy for analytic continuation along a
path from section 5.1 produces an analytic continuation fm : Um→ C of f along
γ, and that fm(w) = f̂ (w).

Hint: Show that there is a suitably large n such that we can choose the ti in such a
way such that ti− ti−1 >

1
n . Conclude that w ∈Um for some m (in fact, this is the

case for some m6 n). Use Corollary 5.1.7 to show that fm(w) = f̂ (w).
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(2) Let γ̃ : I→U be a path from γ(0) to w that is homotopic to γ in U relative to
{0,1}, and f̃m̃ : Um̃→ C an analytic continuation of f to w along γ̃. Show that
f̃m̃(w) = f̂ (w) = fm(w).
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