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Preface

These lecture notes accompany a course that I am giving in the term March–June 2018 at IMPA.
I intend to add chapters accordingly to the progress of these lectures and to regularly put new
versions of these notes online. To make the changes between the different version more visible,
each version will carry a distinct date on the front page. To make it possible to print these notes
chapter by chapter, chapters will start on odd pages and contain a partial bibliography. To make
changes in older parts of the lectures visible, each chapter carries the date of the last changes on
its initial page.

Aim of these notes

In these notes, we will introduce blueprints and blue schemes and explain how this theory can be
used to endow the tropicalization of a classical variety with a schematic structure.

Once the basic constructions are explained, we discuss balancing conditions and connections
to related theories as skeleta of Berkovich spaces, toroidal embeddings and log-structures. We put
a particular weight on explaining open problems in this very young branch of tropical geometry.

Main references

The main aim of this course is to explain (parts of) the material of the papers [GG14] and [GG16]
by Jeffrey and Noah Giansiracusa, [MR14] and [MR16] by Maclagan and Rincón, and [Lor15]
by the author. There will be plenty of secondary references, which we will cite at the appropriate
places.

A useful alternative source are the lecture notes [YALE17] of lectures at YALE, which were
held by various experts in the area and organized by Mincheva and Payne.

I am grateful for any kind of feedback that helps me to improve these notes!
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Chapter 1

Why tropical scheme theory?

chapter last edited on
March 12, 2018

In this first chapter, we explain the purpose of tropical scheme theory, its main achievements as
of today and some of the central question of this new branch of tropical geometry. At the end of
this chapter, we give a brief outline of the previsioned structure of the rest of these notes.

1.1 Tropical varieties

In brevity, a tropical variety is a balanced polyhedral complex. In this section, we explain this
definition, starting with the case of a tropical curve, which is easier to formulate than its higher
dimensional analogue.

Definition 1.1.1. A tropical curve (in Rn) is an embedded graph Γ in Rn with possibly unbounded
edges together with a weight function

m : EdgeΓ−→ Z>0

such that all edges have rational slopes and such that the following so-called balancing condition
is satisfied for every vertex p of Γ: for every edge e containing p, let ve ∈ Zn be the primitive
vector, which is the smallest nonzero vector pointing from p in the direction of e; then

∑
p∈e

m(e) · ve = 0.

Example 1.1.2. In Figure 1.1, we depict a tropical curve in R2, explaining the balancing
condition at the three vertices of the curve.

The generalization of the involved notions to higher dimensions requires some preparation
and leads us to the following definitions.

Definition 1.1.3. A halfspace in Rn is a subset of Rn of the form

H =
{
(x1, . . . ,xn) ∈ Rn

∣∣a1x1 + · · ·+anxn > b
}

with a1, . . . ,an,b ∈ R. The halfspace H is rational if a1, . . . ,an ∈Q.

Definition 1.1.4. A (rational) polyhedron P (in Rn) is an intersection of finitely many (rational)
halfspaces in Rn. A face of a polyhedron P is a nonempty intersection of P with a halfspace H
such that the boundary of H does not contain interior points of P.
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Figure 1.1: A tropical curve in R2 and the balancing condition

Note that the polyhedron P is a face of itself and that every face of a (rational) polyhedron is
again a (rational) polyhedron.

Definition 1.1.5. A polyhedral complex (in Rn) is a finite collection ∆ of polyhedra in Rn such
that the following two conditions are satisfied:

(1) each face of a polyhedron in ∆ is in ∆;

(2) the intersection of two polyhedra in ∆ is a face of both polyhedra or empty.

Definition 1.1.6. Let ∆ be a polyhedral complex. The support of ∆ is

|∆| =
⋃

P∈∆

P.

The dimension of ∆ is dim∆ = max{dimP |P ∈ ∆}. The polyhedral complex ∆ is equidimen-
sional if

|∆| =
⋃

dimP=dim∆

P

and ∆ is rational if every polyhedron P in ∆ is rational.

Exercise 1.1.7. Let H be a rational subvector space of Rn, i.e. H has a basis in Qn. Show that
the image of Zn ⊂Rn under the quotient map π : Rn→Rn/H is a lattice, i.e. a discrete subgroup
Λ that is isomorphic to Zk where k = n− dimH. The isomorphism Λ ' Zk extends to an
isomorphism Rn/H ' Rk of vector spaces, i.e. we can identify π with a surjection π′ : Rn→ Rk

that maps Zn to Zk. Show that the image π′(P) of a rational polyhedron P in Rn is a rational
polyhedron in Rk.

Let P be a rational polyhedron in Rn and x0 ∈ P. Show that the subvector space H spanned
by {x− x0|x ∈ P} is rational and does not depend on the choice of x0. Choose an isomorphism
Rn/H ' Rk as above. Conclude that the image P of P in Rk is a 0-dimensional rational
polyhedron. More generally, let Q be rational polyhedron that contains P as a face. Show that
the image Q of Q in Rk is a rational polyhedron of dimension dimQ−dimP.

We call the image Q under the quotient map π′ : Rn→ Rk, as considered in Exercise 1.1.7,
the image of Q modulo the affine linear span of P. If Q is a rational polyhedron of dimension
dimQ = dimP+1 that contains P as a face, then the image Q of Q in Rk is a one dimensional
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rational polyhedron that contains P as a boundary point. Thus we can speak of the primitive
vector vQ of Q at P, which is the smallest nonzero vector in Rk with integral coefficients that is
pointing from P in the direction of Q.

Definition 1.1.8. A tropical variety (in Rn) is an equidimensional and rational polyhedral
complex ∆ together with a weight function

m :
{

P ∈ ∆
∣∣dimP = dim∆

}
−→ Z>0

such that for every polyhedron P ∈ ∆ with dimP = dim∆−1, the top dimensional polyhedra in
∆ containing P satisfy the balancing modulo the affine linear span of P, i.e.

∑
P(Q

m(Q)vQ = 0

where P and Q are the images of P and Q modulo the affine linear span of P and where vQ is the
primitive vector of Q at P.

1.2 Tropicalization of classical varieties

Let k be a field.

Definition 1.2.1. A nonarchimedean absolute value of k is a function v : k→ R>0 such that for
all a,b ∈ k,

(1) v(0) = 0 and v(1) = 1;

(2) v(ab) = v(a)v(b);

(3) v(a+b)6max{v(a),v(b)}.
An nonarchimedean absolute value is trivial if v(a) = 1 for all a ∈ k×. Otherwise it is called
nontrivial. An nonarchimedean absolute value is discrete if v(k×) is a discrete subset of R>0.

A nonarchimedean field is an algebraically closed field k together with a nontrivial nonar-
chimedean absolute value v.

Exercise 1.2.2. Let v be a nonarchimedean absolute value on a field k. Show the following
assertions.

(1) If v is trivial, then v is discrete. If k is algebraically closed and v is discrete, then v is trivial.
Give an example of a discrete absolute value that is not trivial. If v is not discrete, then its
image in R>0 is dense.

(2) We have v(k×) ⊂ R>0 and v(−1) = 1. If v(a) 6= v(b), then v(a+b) = max{v(a),v(b)}.
Conclude that if ∑

n
i=1 ai = 0 in k, then at least two terms v(ak) and v(al) with k 6= l assume

the maximum max{v(ai)}.
For the rest of this chapter, we fix a nonarchimedean field (k,v). Let X ⊂ (k×)n be an

algebraic variety, i.e. the zero set of Laurent polynomials f1, . . . , fr ∈ k[T±1
1 , . . . ,T±1

n ].

Definition 1.2.3. The tropicalization of X is defined as the topological closure X trop = trop(X)
of the image of X under the map

trop : (k×)n Rn
>0 Rn.

(v,...,v) (log,...,log)
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Example 1.2.4. In Figure 1.2, we illustrate the tropicalization of a genus 1 curve E, embedded
sufficiently general in (k×)2. More precisely, we illustrate the tropicalization of the compactifi-
cation E of E, which embeds into the projective plane P2. This means that all unbounded edges
of the tropicalization of E gain a second boundary point, which we illustrate by bullets in Figure
1.2. Note that this picture suggests that tropicalizations preserve certain geometric invariants like
the genus.

−2 0 2 −2
0

2
4

−2

0

2 tropicalization

Figure 1.2: Tropicalization of an elliptic curve, including its points at infinity

Theorem 1.2.5 (Structure theorem for tropicalizations). Let (k,v) be a nonarchimedean field
and X ⊂ (k×)n an equidimensional algebraic variety. Then

(1) X trop = |∆| for a rational and equidimensional polyhedral complex ∆;

(2) X ⊂ (k×)n determines a weight function

m :
{

P ∈ ∆
∣∣dimP = dim∆

}
−→ Z>0

such that (∆,m) is a tropical variety.

The first part of the structure theorem has been proven by Bieri and Groves in their 1984
paper [BG84], which precedes tropical geometry by around 15 years and uses a slightly different
setup than we do in our statement. The second part has been proven by Speyer in his thesis
[Spe05]. A formulation of the structure theorem that is very close to ours appears in Maclagan
and Sturmfels’ book [MS15] as Theorem 3.3.6.

1.3 Two problems with the concept of a tropical variety

There are two oddities with the concept of a tropical variety that create difficulties for the devel-
opment of algebro-geometric tools for tropical geometry and their application to tropicalizations
of classical varieties.

The first problem is that the polyhedral complex ∆ with |∆|= X trop is not determined by the
classical variety X ⊂ (k×)n. In other words,

the tropicalization of a classical variety is not a tropical variety.

The second problem relates to the functions of a tropical variety. The explanation of this
issue requires some preliminary definitions.
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Definition 1.3.1. The tropical semifield is the set T= R>0 together with the addition

a+b = max{a,b}

and the usual multiplication
a ·b = ab

of nonnegative real numbers a,b.

Together with these operations T is indeed a semifield, i.e. it satisfies all of the axioms
of a field except for the existence of additive inverses. The tropical semifield allows for the
following reformulation of Definition 1.2.1: a nonarchimedean absolute value is a multiplicative
map v : k→ T that is subadditive, i.e. v(a+b)6 v(a)+ v(b) where the latter sum is taken with
respect to the addition in T.

Remark 1.3.2. In these lecture notes, we adopt the “max-times”-convention for the tropical
numbers, which is less common than the “max-plus” or the “min-plus”-convention. To explain,
the map log :T→ Rdefines an isomorphism of semirings between the tropical semifield T and the
max-plus-algebra R=(R∪{−∞},max,+). Multiplication of with (−1) defines an isomorphism
R→ R between the max-plus-algebra with the min-plus-algebra R= (R∪{∞},min,+).

A priori, it is a matter of choice, with which semifield one works. But depending on the
situation, some choices are more natural than others. When considering tropical varieties as
polyhedral complexes, then the piecewise linear structure of the tropical variety is only visible in
the logarithmic picture, i.e. one is led to work with the max-plus or the min-plus-algebra.

When working with tropical polynomials and tropical functions, in particular when compared
to classical polynomials and functions, then it is more natural and less confusing to work with
the max-times-convention.

Definition 1.3.3. The tropical polynomial algebra in T1, . . . ,Tn is the set

T[T1, . . . ,Tn] =
{

∑
J=(e1,...,en)

aJT e1
1 · · ·T en

n

∣∣aJ ∈ T and aJ = 0 for almost all J
}
,

which is a semiring with respect to the usual addition and multiplication rules for polynomials
where we apply the tropical addition aI +aJ = max{ai,aJ} to add coefficients.

A tropical polynomial f = ∑aJT e1
1 · · ·T en

n defines the function

f (−) : Tn −→ T.
x = (x1, . . . ,xn) 7−→ f (x) = max

{
aJxe1

1 · · ·xen
n
}

We are prepared to explain the second problem with tropical varieties. Namely, different
polynomials can define the same function, as demonstrated in the following example.

Example 1.3.4. Consider f1 = T 2 +1 and f2 = T 2 +T +1. Then

f1(x) = x2 +1 = max{x2,1}= max{x2,x,1}= f2(x)

for all x ∈ T.

In other words,

tropical functions are not the same as tropical polynomials.
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To understand why tropical scheme theory promises to resolve these digressions, let us have
a look at classical algebraic geometry.

For varieties over an algebraically closed field, Hilbert’s Nullstellensatz guarantees that
functions are the same as polynomials. However, if one tries to generalize the concept of a
variety to arbitrary field or even rings, one faces the same problem: different polynomials can
define the same function.

Grothendieck surpassed this problem with the invention of schemes. Since the functions of a
tropical variety do not form a ring, but merely a semiring, it is clear that Grothendieck’s concept
of a scheme does not find applications in tropical geometry.

However, F1-geometry has provided a theory of so-called semiring schemes, cf. the papers
[Dur07] of Durov, [TV09] of Toën-Vaquié and [Lor12] of the author. This theory and its
refinement in terms of blueprints provides an appropriate framework for tropical scheme theory.

1.4 Semiring schemes

In this section, we give an idea of the definition of a semiring scheme. Similar to a scheme, it is
built from the spectra of semirings. In order to understand this relation between tropical varieties
and semiring schemes that we have in mind, we explain this concept in analogy to classical
varieties and schemes, concentrating on the affine situation. More details about the construction
of semiring schemes will be explained in later parts of these notes.

Let k be an algebraically closed field and X ⊂ kn a variety, i.e. the zero set of polynomials
f1, . . . , fr ∈ k[T1, . . . ,Tn]. Let

I =
{

f ∈ k[T1, . . . ,Tn]
∣∣ f (x1, . . . ,xn) = 0 for all (x1, . . . ,xn) ∈ X

}
.

be its ideal of definition and A = k[T1, . . . ,Tn]/I its ring of regular functions.
The associated scheme is the spectrum of A, which is the set SpecA of all prime ideals of A

together with the topology generated by the principal open subsets

Uh = {p⊂ A |h /∈ p}

for h ∈ A and with the structure sheaf

O : {open subsets of SpecA} −→ Rings.
Uh 7−→ A[h−1]

We can recover the variety X from SpecA as follows. The ring of regular functions A =
k[T1, . . . ,Tn]/I equals the ring of global sections

O(SpecA) = A[1−1] = A.

The variety X is equal to the set of k-rational points of SpecA, i.e. we have a canonical bijection

X −→ Homk(A,k) = Homk(Speck,SpecA)

that sends a point x = (x1, . . . ,xn) of X to the evaluation map

evx : h 7→ h(x).

Its inverse sends a homomorphism f : A→ k to the point
(

f (T1), . . . , f (Tn)
)

of X .
The definition of SpecA extends to any semiring A as follows. There are natural extensions

of the notions of prime ideals and localizations from rings to semirings.
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Definition 1.4.1. The spectrum of A is the set SpecA of all prime ideals of A together with the
topology generated by the principal open subsets

Uh = {p⊂ A |h /∈ p}

for h ∈ A and with the structure sheaf

O : {open subsets of SpecA} −→ Semirings
Uh 7−→ A[h−1]

A semiring scheme is a topological space together with a sheaf in the category of semiring
that is locally isomorphic to the spectra of semirings. A detailed definition of all this terminology
will be given in later chapters.

1.5 Scheme theoretic tropicalization

In this section, we give an outline of the Giansiracusa tropicalization, which associates with
a classical variety a semiring scheme whose T-rational points correspond to the set theoretic
tropicalization as considered in section 1.2. For the sake of simplicity, we explain this for
subvarieties of affine space opposed to suvarieties of a torus, which is the context of section 1.2.

We require some notation. For a multi-index J = (e1, . . . ,en), we write T J = T e1
1 · · ·T en

n and
xJ = xe1

1 · · ·xen
n . Let f = ∑aJT J ∈ k[T1, . . . ,Tn]. We define

f trop = ∑v(aJ)T J ∈ T[T1, . . . ,Tn].

Let X ⊂ kn a variety with ideal of definition I.

Definition 1.5.1. The Giansiracusa tropicalization of X is the semiring scheme

Tropv(X) = Spec
(
T[T1, . . . ,Tn]/ bendv(I)

)
where the bend relations bendv(I) are defined as

bendv(I) =
(

f trop ∼ f trop + v(bJ)T J
∣∣∣ f +bJT J ∈ I

)
.

The main result of Jeffrey and Noah Giansiracusa in [GG16] is the following connection to
the set theoretic tropicalization X trop of X , which stays in analogy to the corresponding result for
schemes and varieties over an algebraically closed field.

Theorem 1.5.2 (Jeffrey and Noah Giansiracusa ’13). We can recover the tropical variety X trop

as a set via a natural bijection

X trop ∼−→ HomT(SpecT,Tropv(X)).

Moreover, in case of a projective variety X , the Giansiracusa brothers associate with Tropv(X)
a Hilbert polynomial and show that it coincides with the Hilbert polynomial of X . This might be
seen as the first striking result of tropical scheme theory.

Diane Maclagan and Felipe Rincón have shown in [MR14] that the embedding of Tropv(X)
into the n-dimensional tropical torus remembers the weights of the tropical variety X trop, pro-
vided one has chosen the structure of a polyhedral complex. To wit, the embedding of a
variety X into (k×)n yields an embedding of Tropv(X) into the n-dimensional tropical torus
SpecT[T±1

1 , . . . ,T±1
n ].
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Theorem 1.5.3 (Maclagan-Rincón ’14). Assume that X ⊂ (k×)n is equidimensional. Then the
weight function m of any realization of X trop as a tropical variety (∆,m) is determined by the
embedding of Tropv(X) into SpecT[T±1

1 , . . . ,T±1
n ].

In the author’s paper [Lor15], the above results are refined and generalized by using blueprints
and blue schemes. We mention two applications of this refined approach: the Giansiracusa
tropicalization can be applied to more general situations than tropicalizations of subvarieties of
toric varieties; for instance, it is possible to endow skeleta of Berkovich spaces with a schematic
structure under certain additional hypotheses. Another feature is that the weight function of the
tropical variety is already encoded into the structure sheaf of the “blue tropical scheme”, which
opens the possibility for a theory of abstract tropical schemes, opposed to embedded tropical
schemes.

1.6 A central problem in tropical scheme theory

The aforementioned results give hope that the replacement of tropical varieties by tropical
schemes will allow for new tools in tropical geometry, such as sheaf cohomology or a cohomo-
logical interpretation of intersection theory. However, it is not at all clear what a good notion of
a “tropical scheme” might be.

The theory of semiring schemes comes with the notion of a T-scheme, which is a morphism
X → SpecT of semiring schemes. However, there are too many T-schemes to make this a useful
class. For example, every hyperplane in Rn can be realized as a T-scheme, and such subsets of
Rn cannot satisfy the balancing condition with respect to any polyhedral subdivision and any
choice of weight function. Even worse, every intersection of hyperplanes can be realized as
T-schemes, and such intersections include all bounded convex subsets of Rn, e.g. the unit ball.

This makes clear that we have to restrict our attention to a subclass of T-schemes in order
to obtain a useful class that could replace the class of tropical varieties. Maclagan and Rincon
make a suggestion for such a class, which is based on the observation that the ideal of definition
of the tropicalization of a classical variety is a valuated matroid. In [MR14] and [MR16], they
investigate the class of T-schemes whose ideal of definition is a valuated matroid and show
certain desirable properties like chain conditions for “tropical ideals” and the preservation of
Hilbert functions.

Unfortunately, this theory encounters some serious difficulties since the class of tropical
ideals is, a priori, too restrictive. For instance, the ideals of definition of some prominent spaces
in tropical geometry, like linear tropical spaces and Grassmannians, are not tropical ideals.
Moreover both the intersection and the sum of two tropical ideals fail to be a tropical ideal
in general, which provides obstacles for primary decompositions and intersection theory of
schemes, respectively.

It might be the case that there is natural way to associate a “generically generated” tropical
ideal with ideals occuring in the situations explained above, but this seems to be a difficult
problem. It might be the case that the class of tropical ideals, as considered in [MR14], is too
restrictive for a useful theory of “tropical schemes”.

In so far, we formulate the central problem of tropical scheme theory in the following way.
We would like to find a class C of T-schemes that satisfies the following criteria:

• C contains the tropicalizations of all classical varieties and for every tropical variety, C
contains a T-scheme representing it;



1.7. Outline of the previsioned contents of these notes 9

• C contains “universally constructable T-schemes” such as tropical linear spaces and
tropical Grassmannians;

• the T-rational points of every T-scheme in C yields a tropical variety; in particular, this
involves a theory of balancing conditions for T-schemes;

• defining ideals of schemes in C are closed under intersections and sums;

• C allows for a dimension theory by considering chains of irreducible reduced T-schemes
in C; in particular, this involves the notion of an irreducible T-scheme.

A more comprehensive list of open problems in tropical scheme theory was compiled at a
workshop in April 2017 at the American Institute of Mathematics, see [AIM17] for a link to the
problem list.

1.7 Outline of the previsioned contents of these notes

The central goal of these notes is to explain the material of the previous sections in detail. This
includes reviewing some parts of “classical” tropical geometry and introducing semiring schemes,
monoid schemes and blue schemes. We intend to discuss the Giansiracusa tropicalization and
subsequent results from the papers [GG14] and [GG16] by Jeffrey and Noah Giansiracusa,
[MR14] and [MR16] by Maclagan and Rincón, and [Lor15] by the author.

If we achieve this central goal in time, then we intend to treat more advanced topics like
scheme theoretic skeleta of Berkovich spaces, schemes over the tropical hyperfield or families of
matroids.

The chapters of these notes will be grouped into parts. The first part reviews the algebraic
foundations, which are (ordered) semirings, monoids, blueprints, localizations, ideals and
congruences. The second part is dedicated to generalized scheme theory and contains the
constructions of semiring schemes, monoid schemes and blue schemes. The third part enters the
central the theme of these notes, which is scheme theoretic tropicalization.
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Algebraic foundations
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Chapter 2

Semirings

chapter last edited on
March 14, 2018

In this chapter, we will provide the necessary background on semirings for our purposes. A
standard source for the theory of semirings is Golan’s book [Gol99], which the reader might
want to confer as a secondary reference.

We illustrate the basic definitions and facts in numerous examples. Certain basic facts,
which are either easy to prove or allow for a proof analogous to the case of rings, will be left as
exercises.

2.1 The category of semirings

Definition 2.1.1. A (commutative) semiring (with 0 and 1) is a set R together with an addition
+ : R×R→ T , a multiplication · : R×R→ R and two constants 0 and 1 such that the following
axioms are satisfied:

(1) (R,+) is an associative and commutative semigroup with neutral element 0;

(2) (R, ·) is an associative and commutative semigroup with neutral element 1;

(3) (a+b)c = ac+bc for all a,b,c ∈ R;

(4) 0 ·a = 0 for all a ∈ R.

A morphism between semirings R1 and R2 is a map f : R1→ R2 such that f (0) = 0, f (1) = 1,
f (a+ b) = f (a)+ f (b) and f (ab) = f (a) · f (b) for all a,b ∈ R. We denote the category of
semirings by SRings.

Let R be a semiring. A subsemiring of R is a subset S that contains 0 and 1 and is closed
under sums and products. The unit group or units of R is the subset R× of multiplicatively
invertible elements together with the restriction of the multiplication of R to R×. A semifield is a
semiring R such that R× = R−{0}.

Note that the constants 0 and 1 of a semiring R are uniquely determined as the neutral
elements of addition and multiplication, respectively. In some examples, we take the liberty to
omit an explicit description of these constants. Note further that the multiplication of R does
indeed restrict to a multiplication R××R×→ R×, which turns R× into a multiplicative group.

Remark 2.1.2. Similar to the notion of a ring, the notion of a semiring is not standardized in the
literature. In other texts, the reader will find noncommutative semirings and semirings without 0
or 1. Similarly, semiring morphism might not required to preserve 0 or 1, which are properties

13
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that do not follow automatically from the other axioms. We will not encounter such weaker
notions of semirings in these notes.

Example 2.1.3. Every ring is tautologically a semiring. Examples of semirings that are not rings
are the following: the natural numbers N with respect to the usual addition and multiplication;
the nonnegative real numbers R>0 with respect to the usual addition and multiplication; and the
tropical numbers T.

Note that a subsemiring S of R is a semiring with respect to the restrictions of the addition
and multiplication of R. This includes the subsemiring of tropical integers OT = {a ∈ T|a6 1}
of T and the subsemiring of Boolean numbers B= {0,1} of OT.

Examples of morphisms of semirings are inclusions S ↪→ R of subsemirings into the ambient
semiring. Other examples are the following maps: f : T→ B with f (a) = 1 for all a 6= 0;
g : N→ B with g(a) = 1 for all a 6= 0; h : OT→ B with h(a) = 0 for all a 6= 1.

Exercise 2.1.4. Show that the min-plus-algebra R and the max-plus-algebra R, as defined in Re-
mark 1.3.2, are semifields. What are the neutral elements for addition and multiplication? Show
that the logarithm defines an isomorphism of semirings log : T→ R. Show that multiplication
with −1 defines an isomorphism of semirings (−1) : R→ R.

Let X be a closed subset of Rn. Show that the set Fun(X ,R) of functions from X to R
inherits the structure of a semiring from the addition and multiplication in R. Let CPL(X) be
the smallest subring of Fun(X ,R) that contains all functions of the type ax+b with a ∈ Z and
b ∈ T. Show that CPL(X) consists of all convex piecewise linear functions f : X → R with
integer slopes for which there is a finite covering of X by closed subsets Zi such that f |Zi is linear
for each i.

Exercise 2.1.5. Let f1 : S→ R1 and f2 : S→ R2 be two morphisms of semirings. Define the
tensor product R1⊗S R2 as the set of finite sums ∑ai⊗bi of tensors ai⊗bi of elements ai ∈ R1
and bi ∈ R2, subject to the same relations as in the case of the tensor product of rings. Show that
this forms a semiring that comes with morphisms ιi : Ri→ R1⊗S R2 (i = 1,2), sending a ∈ R1 to
a⊗1 and b ∈ R2 to 1⊗b, respectively.

Formulate and prove the usual properties of the tensor product: (1) The tensor product is
the colimit (or pushout) of the morphism f1 and f2; (2) every bilinear morphism from R1×R2
defines a unique morphism from R1⊗R2; (3) the functor −⊗S R is left adjoint to the functor
HomS(R,−).

Exercise 2.1.6. Show that the category of semirings is complete and cocomplete. More precisely
show the following.

(1) Show that the natural numbers N form an initial object and that the trivial ring {0 = 1}
forms a terminal object in SRings.

(2) Let {Ri}i∈I be a family of semirings. Then the Cartesian product ∏I∈I Ri together with
componentwise addition and multiplication is a semiring, and the projections π j : ∏Ri→
R j are semiring homomorphisms. The semiring ∏I∈I Ri together with the projections π j is
a product of the Ri.

(3) Let f ,g : R1→ R2 be two morphisms of semirings. Show that eq( f ,g) = {a ∈ R1| f (a) =
g(a)} is a subsemiring of R1 and that the eq( f ,g) together with the inclusion eq( f ,g)→R1
is an equalizer of f an g.
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(4) Let f ,g : R1→ R2 be two morphisms of semirings. Show that there exists a coequalizer of
f and g. Hint: Use Lemma 2.4.8 to show that there exists a congruence generated by the
relations f (a)∼ g(a) where a ∈ R1.

(5) Let {Ri}i∈I be a finite family of semirings. Show that it has a coproduct, which we denote
by
⊗

i∈I Ri. Hint: Use filtered colimits (i.e. “unions”) of finite tensor products over N.

Exercise 2.1.7. Show that a morphism f : R1 → R2 is a monomorphism if and only if it is
injective. Show that f is an isomorphism if and only if f is bijective. Show that every surjective
morphism is an epimorphism. Give an example of an epimorphism that is not surjective (hint: cf.
Exercise 2.7.3).

Exercise 2.1.8. Let f : R→ S be a morphism of semirings. Show that the set theoretic image
im f = f (R) is a subsemiring of S. Show that im f together with the restriction f ′ : R→ im f
of f and the inclusion im f → S is the categorical image of f . Conclude that every morphism
factors into an epimorphism followed by a monomorphism.

2.2 First properties

We list some first properties that characterize important subclasses of semirings.

Definition 2.2.1. A semiring R is

• without zero divisors if for any a,b ∈ R, the equality ab = 0 implies that a = 0 or b = 0;

• integral (or multiplicatively cancellative) if 0 6= 1 and for any a,b,c ∈ R the equality
ac = bc implies c = 0 or a = b;

• strict if a+b = 0 implies a = b = 0 for all a,b ∈ R;

• (additively) cancellative if for any a,b,c ∈ R the equality a+ c = b+ c implies a = b;

• (additively) idempotent if 1+1 = 1.

Lemma 2.2.2. Let R be a semiring.

(1) If 0 = 1, then R is trivial, i.e. R consists of the single element 0 = 1.

(2) If R is idempotent and cancellative, then R is trivial.

(3) If R is idempotent, then a+a = a for all a ∈ R.

(4) If R is idempotent, then R is strict.

(5) If R is integral, then R is without zero divisors.

Proof. If 1 = 0, then we have for every a ∈ R that a = 1 ·a = 0 ·a = 0. Thus (1).
If R is idempotent and cancellative, then 1+1 = 1 = 1+0 implies 1 = 0. Thus (2).
If 1+1 = 1, then we have for every a ∈ R that a+a = a(1+1) = a ·1 = a. Thus (3).
If R is idempotent and a+b = 0, then we have a = a+a+b = a+b = 0 and similarly b = 0.

Thus (4).
If R is integral and ab = 0, then ab = 0 = 0 ·b implies b = 0 or a = 0. Thus (5).

Note that a nontrivial semiring without zero divisors does not have to be integral, in contrast
to the situation for rings. An example verifying this claim is the tropical polynomial ring T[T ],
cf. Exercise 2.4.5; see Exercise 2.3.3 for another example.
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Exercise 2.2.3. Verify which of the semirings from Example 2.1.3 and Exercise 2.1.4 are without
zero divisors, integral, strict, cancellative or idempotent.

Exercise 2.2.4. Show that the morphism ι : R→ R⊗N Z, sending a to a⊗ 1, satisfies the
following properties: RZ = R⊗NZ is a ring and every semiring morphism f : R→ S into a ring
S factors uniquely through ι. Show that R is cancellative if and only if ι : R→ RZ is injective.
Show that R contains an additive inverse of 1, i.e. an element a such that 1+a = 0, if and only if
R is a ring. Show that in this case ι : R→ RZ is an isomorphism.

2.3 Semigroup algebras and polynomial semirings

Definition 2.3.1. Let R be a semiring and A a multiplicatively written abelian semigroup with
neutral element 1A. The semigroup algebra of A over R is the semigroup ring R[A] of finite
R-linear combinations ∑raa of elements a ∈ A, i.e. the sum contains only finitely many nonzero
coefficients ra ∈ R. The addition of R[A] is defined by the formula[

∑raa
]
+
[
∑saa

]
= ∑(ra + sa)a

and the product is defined by the formula[
∑raa

]
·
[
∑saa

]
= ∑

a=bc
(rb · sc)a.

The zero of R[A] is the empty sum 0, i.e. the linear combination ∑raa with ra = 0 for all a, and
the one of R[A] is the linear combination 1 = ∑raa for which r1A = 1 and ra = 0 for a 6= 1A.

If A is the free abelian semigroup on the set of generators {Ti}i∈I , then we write R[A] =
R[Ti]i∈I or R[A] = R[T1, . . . ,Tn] if I = {1, . . . ,n}. We call R[Ti] the free algebra over R in {Ti} or
the polynomial semiring over R in {Ti}.

We allow ourselves to omit zero terms from the sums ∑raa, i.e. we may write sb+ tc for
the element ∑raa of R[A] with rb = b, rc = t and ra = 0 for a 6= b,c. We simply write a for the
element 1a of R[A] and r for the element r1A of R[A].

Exercise 2.3.2. Show that R[A] is a semiring. Show that the map ιR : R→ R[A] with ιR(r) = r
is an injective morphism of semirings. Show that the map ιA : A→ R[A] with ιA(a) = a is a
multiplicative map, i.e. ιA(1A) = 1 and ιA(ab) = ιA(a) · ιA(b) for all a,b ∈ A. Show that for
every semiring morphism fR : R→ S and every multiplicative map fA : A→ S, there is a unique
semiring morphism f : R[A]→ S such that fA = f ◦ ιA and fR = f ◦ ιR. Use this to formulate and
prove the universal property for a polynomial semiring over R.

Exercise 2.3.3. Let A = {1, ε} be the semigroup with ε2 = ε and B the Boolean numbers (cf.
Example 2.1.3). Show that B[A] has 4 elements. Determine the addition and multiplication table
for B[A]. Show that B[A] is without zero divisors, but not integral.

2.4 Quotients and congruences

Definition 2.4.1. Let R be a semiring. A congruence on R is an equivalence relation c on R that
is additive and multiplicative, i.e. (a,b) and (c,d) in c imply (a+ c,b+d) and (ac,bd) for all
a,b,c,d ∈ R.
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Exercise 2.4.2. Let R be a ring. Show that for every ideal I of R, the set {(a,b)|a−b ∈ I} is a
congruence on R and that every congruence is of this form.

Exercise 2.4.3. Let k,n ∈ N. Show that the set ck,n = {(m + rk,m + sk) ∈ N×N|m,r,s ∈
N and m> n} is a congruence on N and that every congruence of N is of this form.

Given a congruence c on R, we often write a ∼c b, or simply a ∼ b if there is no danger
of confusion, to express that (a,b) is an element of c. The following proposition shows that
congruences define quotients of semirings.

Proposition 2.4.4. Let R be a semiring and c be a congruence. Then the associations [a]+ [b] =
[a+b] and [a]·]b = [ab] are well-defined on equivalence classes [a] of c and turn the quotient
R/c into a semiring with zero [0] and one [1].

The quotient map π : R→ R/c is a morphism of semirings that satisfies the following
universal property: every morphism f : R→ S of semiring such that f (a) = f (b) whenever a∼ b
in c factors uniquely through π.

Proof. Consider a∼ a′ and b∼ b′. Then a+b∼ a′+b′ and ab∼ a′b′. Thus the addition and
multiplication of R/c does not depend on the choice of representative and is therefore well-
defined. The properties of a semiring follow immediately, including the characterization of the
zero as [0] and the one as [1]. That π : R→ R/c is a semiring homomorphism is tautological by
the definition of R/c.

Let f : R→ S be a semiring morphism such that f (a) = f (b) whenever a∼ b in c. For f to
factor into f ◦π for a semiring morphism f : R/c→ S, it is necessary that f ([a]) = f ◦π(a)= f (a).
This shows that f is unique if it exists. Since a ∼ b implies f (a) = f (b), we conclude that f
is well-defined as a map. The verification of the axioms of a semiring morphism are left as an
exercise.

Exercise 2.4.5. Let n> 1. Show that R = T[T1, . . . ,Tn] is without zero divisors, but not integral.
Show that the relation {( f ,g) ∈ R×R| f (x) = g(x) for all x ∈ Tn} is a congruence on R; cf.
section 1.3 for definition of f (x). Show that the quotient R/c is integral and isomorphic to
CPL(Rn); cf. Exercise 2.1.4 for the definition of CPL(Rn).

Conversely, every quotient is characterized by a congruence. More precisely, for every
semiring morphism, there is a congruence that characterizes which elements in the domain
become identified in the image.

Definition 2.4.6. Let f : R→ S be a morphism of semirings. The congruence kernel of f is the
relation c( f ) = {(a,b) ∈ R×R| f (a) = f (b)} on R.

Lemma 2.4.7. The congruence kernel c( f ) of a morphism f : R→ S of semirings is a congruence
on R.

Proof. That c= c( f ) is an equivalence relation follows from the following calculations: f (a) =
f (a) (reflexive); f (a) = f (b) implies f (b) = f (a) (symmetry); f (a) = f (b) and f (b) = f (c)
imply f (a) = f (c) (transitive). Additivity and multiplicativity follow from: f (a) = f (b) and
f (c) = f (d) imply f (a+c) = f (a)+ f (c) = f (b)+ f (d) = f (b+d) and f (ac) = f (a) · f (c) =
f (b) · f (d) = f (bd). This shows that c is a congruence.



18 Semirings

As a consequence of this lemma, we see that for a semiring R, the associations{
congruences on R

}
←→

{
quotients of R

}
c 7−→ R→ R/c

c(π) 7−→ π : R� R′

are mutually inverse bijections. We will see in section 2.5 that we do not have a correspondence
between quotients and ideals, as in the case of rings. In so far, one has to work with congruences
when one wants to describe quotients of semirings.

Lemma 2.4.8. Let R be a semiring and S ⊂ R×R be any subset. Then there is a smallest
congruence c = 〈S〉 containing S. The quotient map π : R→ R/〈S〉 satisfies the following
universal property: every morphisms f : R→ R′ with the property that f (a) = f (b) whenever
(a,b) ∈ S factors uniquely through π.

Proof. It is readily verified that the intersection of congruences is again a congruence. As
a consequence, the intersection of all congruences containing S is the smallest congruence
containing S.

Given any morphism f : R→ R′ with the property that f (a) = f (b) whenever (a,b) ∈ S,
then the congruence kernel c( f ) must contain S and thus c= 〈S〉. Using Proposition 2.4.4, we
see that f factors uniquely through π.

This lemma shows that we can construct new semirings from known ones by prescribing a
number of relations: let R be a semiring and {ai ∼ bi} a set of relations on R, i.e. S = {(ai,bi)}
is a subset of R×R. Then we define R/〈ai ∼ bi〉 as the quotient semiring R/〈S〉.

Exercise 2.4.9. Show that B[T ]/〈T 2 ∼ T 〉 is isomorphic to the semigroup algebra B[A] where
A = {1, ε} is the semigroup with ε= ε2; cf. Exercise 2.3.3. Determine all congruences on B[A].

Exercise 2.4.10. Let R be a semirings and c a congruence on R. Show that c is a subsemiring of
R×R containing the image of the diagonal map ∆ : R→ R×R.

Let f : R→ S be a homomorphism of semirings. Show that the congruence kernel of f
together with the inclusion into R×R is the equalizer of the morphisms f ◦pr1 and f ◦pr2 from
R×R to S where pri : R×R→ R is the i-th canonical projection (i = 1,2).

2.5 Ideals

While the concept of congruences is the correct generalization of ideals from rings to semirings
that characterizes quotients of semirings, there are other more straight-forward generalizations
of ideals, which carry over other properties from rings to semirings. In this section, we will
examine two such notions: ideals and k-ideals.

Definition 2.5.1. Let R be a semiring. An ideal of R is a subset I of R such that 0, ac and a+b
are elements of I for all a,b ∈ I and c ∈ R. A k-ideal or a subtractive ideal of R is an ideal I of R
such that a+ c = b with a,b ∈ I and c ∈ R implies c ∈ I.

Once we make sense of the concept of a (semi)module over R, we could characterize an ideal
of R as a submodule of R. The relevance of (prime) ideals of semirings lies in the fact that they
are the good notion of points of the spectrum of R. We will come back to this in the chapter on
semiring schemes.
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The relevance of k-ideals is easier to explain. Namely, they form the class of subsets that is
characterized as the 0-fibres, or kernels, of semiring morphisms. We assume, without evidence,
that the “k” in “k-ideal” stands for “kernel”. The name k-ideal seems to be coined by Henriksen
in [Hen58].

Definition 2.5.2. Let f : R→ S be a semiring morphism. The (ideal) kernel of f is the inverse
image ker( f ) = f−1(0) of 0.

Let S be a subset of R. The congruence generated by S is the congruence c(S) generated by
{(a,0)|a ∈ S}.

Proposition 2.5.3. The kernel ker( f ) of a morphism of semiring f : R→ S is a k-ideal and every
k-ideal appears as a kernel. More precisely, if I is a k-ideal of R and c= c(I) is the congruence
generated by I, then I is the kernel of π : R→ R/c and a∼c b if and only if there are elements
c,d ∈ I such that a+ c = b+d.

Proof. We begin with the verification that ker( f ) is a k-ideal. Clearly 0 ∈ ker( f ). Let a,b ∈
ker( f ) and c ∈ R. Then f (ac) = f (a) f (c) = 0 · f (c) = 0 and f (a+b) = f (a)+ f (b) = 0, thus
ac and a+b are in ker( f ). If a+ c = b, then f (c) = 0+ f (c) = f (a)+ f (c) = f (b) = 0 shows
that c ∈ ker( f ). Thus ker( f ) is a k-ideal.

In order to verify the second claim of the proposition, we begin with showing that the relation

c′ =
{
(a,b) ∈ R×R |a+ c = b+d for some c,d ∈ I

}
is a congruence. Reflexivity and symmetry are immediate from the definition. Transitivity is
shown as follows: if a∼c′ b∼c′ b′, then there are elements c,d,c′,d′ ∈ I such that a+ c = b+d
and b+ c′ = b′+ d′. Adding c′ to the former and d to the latter equation yields a+ c+ c′ =
b+d + c′ = b′+d +d′. Since I is closed under sums, c+ c′ and d +d′ are in I and thus a∼c′ b′.
This shows that c′ is an equivalence relation.

We continue with the verification of additivity and multiplicativity of c′. Let a ∼c′ b and
a′ ∼c′ b′, i.e. a+ c = b+d and a′+ c′ = b′+d′ for some c,d,c′,d′ ∈ I. Adding these equations
yields a+a′+ c+ c′ = b+b′+d +d′ where c+ c′ and d +d′ are in I. Thus a+a′ ∼c′ b+b′,
which establishes additivity. Multiplying these equations yields

aa′+ac′+a′c+ cc′ = (a+ c)(a′+ c′) = (b+d)(b′+d′) = bb′+bd′+b′d +dd′.

Since ac′+a′c+cc′ and bd′+b′d+dd′ are in I, we have aa′∼c′ bb′, which shows multiplicativity
of c′. Thus c′ is a congruence.

As the next step, we verify that c′ is equal to the congruence c generated by I. Since
a+0 = 0+0, we see that c′ contains the generating set {(a,0)|a ∈ I} of c. Thus c is contained
in c′. Conversely, consider a relation a ∼c′ b in c′, i.e. a+ c = b+ d for some b,d ∈ I. Then
b∼c 0∼c d and, by the additivity of c,

a = a+0 ∼c a+b = b+d ∼c b+0 = b,

i.e. a∼c b in c. This shows that c= c′, as claimed.
Finally, we show that I is the kernel of π : R→ R/c, i.e. I = {a∈ R|a∼c 0}. By the definition

of c = c(I), it is clear that I ⊂ ker(π). By the characterization of c as c′, we have a ∈ I if and
only if there are elements c,d ∈ I such that a+ c = 0+d = d. Since I is a k-ideal, this equation
implies that a ∈ I. Thus I = ker(π) as claimed. This finishes the proof of the proposition.
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To conclude, ideals, k-ideals and congruences are different generalizations of ideals to
semirings, which do not coincide in general. There are ways to pass from one class to the other,
which follows from our previous results.

Namely, with a congruence c on a semiring R, we can associate the kernel of the projection
πc : R→ R/c, which is a k-ideal; with a k-ideal I, we can associate the congruence c(I) generated
by I. We have that the kernel of R→ R/c(I) is I and the congruence c(kerπc) is contained in c,
but in general not equal to c.

On the other end, every k-ideal is tautologically an ideal. With an ideal I of R, we can
associate the smallest k-ideal containing I, which is the kernel of R→ R/c(I). We summarize
this discussion in the following picture.

“submodules” “kernels” “quotients”{
ideals of R

} {
k-ideals of R

} {
congruences on R

}
Exercise 2.5.4. Describe all ideals, k-ideals and congruences for N; cf. Exercise 2.4.3. Describe
the maps from the above diagram in this example.

Exercise 2.5.5. Let A = {1, ε} be the semigroup with ε2 = ε and R =B[A] the semigroup algebra,
which has been already the protagonist of Exercises 2.3.3 and 2.4.9. Determine all ideals, k-ideals
and congruences of B[A] and describe the above maps between ideals, k-ideals and congruences
explicitly.

2.6 Prime ideals

In the last two sections of this chapter, we turn to topics of relevance for scheme theory, which
are prime ideals and localizations, respectively.

Definition 2.6.1. A (k-)ideal I of R is proper if it is not equal to R. It is maximal if it is proper
and if I ⊂ J implies I = J for any other proper (k)-ideal. It is prime if its complement S = R− I
is a multiplicative subset of R.

Note that a k-ideal I is a prime k-ideal if and only if it is a prime ideal. In so far, we can
use the attribute “prime” unambiguously for ideals and k-ideals. Note, however, that the k-ideal
generated by a prime ideal does not need to be prime; we provide proof in Example 2.6.2 below.

The situation for maximal (k-)ideals is more subtle. A k-ideal that is a maximal ideal is
tautologically a maximal k-ideal. But the converse fails to be true in general, as demonstrated in
Example 2.6.2. This means that we have to make a clear distinction between maximal ideals and
maximal k-ideals.

Example 2.6.2. Consider the semiring R = B[T ]/〈T 2 ∼ T ∼ T +1〉, which is a quotient of the
semiring B[A] from Exercises 2.3.3, 2.4.9 and 2.5.5. It consists of the elements 0,1,T and its
unit group is R× = {1}. The proper ideals of R are (0) = {0} and (T ) = {0,T}, which are both
prime ideals, but only (0) is a k-ideal.

This example demonstrates the following effects:

• (0) is a maximal k-ideal, but it is not a maximal ideal since it is properly contained in the
proper ideal (T ).

• (T ) is a prime ideal, but the k-ideal generated by (T ), which is R, is not a prime k-ideal.
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• The quotient R/(0) of R by the maximal k-ideal (0), which is equal to R, is not a semifield.

• The quotient R/(T ) of R by the k-ideal generated by (T ), which is the trivial semiring
R/R = {0}, is not a semifield.

Being warned that (k-)ideals for semirings fail to satisfy certain properties that we are used
to from ideal theory of rings, we begin with the proof of properties that extend to the realm of
semirings.

Lemma 2.6.3. Let R be a semiring and I a k-ideal of R. Then I is prime if and only if R/I is
nontrivial and without zero divisors.

Proof. The k-ideal I is prime if and only if for all a,b ∈ R, ab ∈ I implies that a ∈ I or b ∈ I.
Passing to the quotient R/I, this means that [ab] = [0] implies [a] = [0] or [b] = [0] where we use
that the kernel of R→ R/I is I, cf. Proposition 2.5.3. This latter condition is equivalent to R/I
being nontrivial and without zero divisors.

Remark 2.6.4. As shown in Example 2.6.2, the usual characterization of maximal ideals as
those ideals whose quotient is a field does not hold for semirings. We can only give the following
quite tautological characterization of maximal k-ideals: a k-ideal I is maximal if and only if the
zero ideal {0} of R/I is a maximal k-ideal.

Lemma 2.6.5. Every maximal ideal of a semiring is a prime ideal.

Proof. Let R be a semiring and m a maximal ideal. Consider a,b ∈ R such that ab ∈ m, but
a /∈m. We want to show that b ∈m.

First we note that the set m∪{a} generates the ideal (1) = R since m is maximal and does
not contain a. We claim that cb ∈m for all c ∈ B. This claim is certainly true for elements c ∈m
and for multiples of a. Thus it is also true for all linear combinations of elements of m∪{a},
which are all elements of R since R = 〈m∪{a}〉. Thus the claim.

We conclude that b = 1 ·b ∈m as desired, which completes the proof.

Lemma 2.6.6. Every maximal k-ideal of a semiring is a prime k-ideal.

Proof. We can prove this affirmation along the lines of the proof of Lemma 2.6.5. However,
in the present case, we can only use that R is equal to the k-ideal generated by m∪{a}, which
requires an additional step in the proof that cb ∈m for all c ∈ R. Namely, the proof of Lemma
2.6.5 shows only cb ∈m for all c in the ideal I generated by m∪{a}.

Consider an equality d+c = e with d and e in I. Then we have db+cb = eb and db,eb ∈m.
Since m is a k-ideal, we also have cb ∈ m. This shows that cb ∈ m for all c ∈ R, and we can
continue as in the proof of Lemma 2.6.5.

Lemma 2.6.7. Let f : R→ R′ be a morphism of semirings and I an ideal of R′. Then f−1(I) is
an ideal of R. If I is prime, then f−1(I) is prime. If I is a k-ideal, then f−1(I) is a k-ideal.

Proof. We verify that f−1(I) is an ideal. Obviously, it contains 0. If a,b ∈ f−1(I) and c ∈ R,
then f (a+b) = f (a)+ f (b) ∈ I and f (ca) = f (c) f (a) ∈ I. Thus a+b,ca ∈ f−1(I). This shows
that f−1(I) is an ideal.

Assume that I is prime, i.e. S = R′− I is a multiplicative set. Then f−1(S) = R− f−1(I) is a
multiplicative set of R and thus f−1(I) is a prime ideal of R.

Assume that I is a k-ideal and consider an equality a+ c = b in R with a,b ∈ f−1(I). Then
f (a)+ f (c) = f (b) and f (a), f (b) ∈ I, which implies that f (c) ∈ I. Thus c ∈ f−1(I), which
shows that f−1(I) is a k-ideal.
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Remark 2.6.8. There is also a concept of prime congruences. More precisely, there are two
possible variants. Let c be a congruence on R. Then c is a weak prime congruence on R if R/c is
nontrivial and without zero divisors, and c is a strong prime congruence on R ifR/c is integral.

However, we do not intend to discuss congruence schemes in these notes and therefore do
not pursue the topic of prime congruences. Note that as of today, there is no satisfying theory of
congruences schemes for semirings, but that such a theory relies on solving some open problems
concerning the structure sheaf of congruence spectra. To explain this issue in more fancy words:
one is led to work with a Grothendieck pre-topology on the category of semirings that is not
subcanonical. This requires a sophisticated setup that establishes substitutes of certain standard
facts for subcanonical topologies.

Exercise 2.6.9. Determine all prime (k-)ideals, all maximal (k-)ideals and all weak and strong
prime congruences of N and B[A] where A = {1, ε} is the semigroup with ε2 = ε. Let f : N→ Z
be the inclusion of the natural numbers into the integers. Describe the map p→ f−1(p) from the
set of prime ideals of Z to the set of prime ideals of N explicitly. Is it injective? Is it surjective?

Exercise 2.6.10. Let R be a semiring and I a proper (k-)ideal of R. Show that R has a maximal
(k-)ideal that contains I. Hint: The usual proof for rings works also for this case. In particular,
the claim relies on the axiom of choice aka Zorn’s lemma.

2.7 Localizations

Definition 2.7.1. Let R be a semiring and S ⊂ R be a multiplicative subset of R, i.e. a subset
that contains 1 and is closed under multiplication. The localization of R at S is the quotient
S−1R of S×R by the equivalence relation that identifies (s,r) with (s′,r′) whenever there is a
t ∈ S such that tsr′ = ts′r in R. We write r

s for the equivalence class of (r,s). The addition and
multiplication of S−1R are defined by the formulas

r
s
+

r′

s′
=

sr′+ s′r
ss′

and
r
s
· r
′

s′
=

r′r
ss′
.

The zero of S−1R is 0
1 and its one is 1

1 .
We write R[h−1] for S−1R if S = {hi}i∈N for an element h∈ R and call R[h−1] the localization

of R at h. We write Rp for S−1R if S = R−p for a prime ideal p of R and call Rp the localization
of R at p. Assume that S = R−{0} is a multiplicative subset of R. Then we write Frac(R) for
S−1R and call it the semifield of fractions of R.

If I is an ideal of R, then we write S−1I for the ideal of S−1R that is generated by { a
1 |a ∈ I}.

Lemma 2.7.2. Let R be a semiring, I an ideal of R and S a multiplicative subset of R. Then

S−1I =
{ a

s ∈ S−1R
∣∣a ∈ I,s ∈ S

}
.

Proof. It is clear that S−1I contains the set {a
1 |a ∈ I} of generators of S−1I. If we have proven

that the set IS = {a
s |a ∈ I,s ∈ S} is an ideal, then it follows that it contains S−1I. The reverse

inclusion follows from the observation that for a
s ∈ IS, we have a

s =
1
s · a

1 ∈ S−1I.
We are left with showing that IS is an ideal. It obviously contains 0

1 . Given a
s ∈ IS and

b
t ∈ S−1R, then a

s · b
t =

ab
st ∈ IS since ab ∈ I. Given a

s ,
b
t ∈ IS, then a,b ∈ I and ta+ sb ∈ I. Thus

a
s +

b
t =

ta+sb
st is an element of IS. This verifies that IS is an ideal of S−1I and finishes the proof

of the lemma.
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Exercise 2.7.3. Let R be a semiring and S a multiplicative subset of R. Show that the map
ιS : R→ S−1R, defined by ιS(a) = a

1 , is a morphism of semirings that maps S to the units of S−1R.
Show that it satisfies the usual universal property of localizations: every morphism f : R→ R′

of semirings that maps S to the units of R′ factors uniquely through ιS. Show that ιS is an
epimorphism.

Exercise 2.7.4. The subset S = R−{0} is a multiplicative subset if and only if R is nontrivial
and without zero divisors. Assuming that S is a multiplicative subset, show that FracR is a
semifield. Show that the morphism ιS : R→ Frac(R) is injective if and only if R is integral.
Describe an example where R→ Frac(R) is not injective.

Proposition 2.7.5. Let R be a semiring, S a multiplicative subset of R and ιS : R→ S−1R the
localization morphism. Then the maps{

prime ideals p of R with p∩S = /0
}
←→

{
prime ideals of S−1R

}
p

Φ7−→ S−1p

ι−1
S (q)

Ψ 7−→ q

are mutually inverse bijections. A prime ideal p of R with p∩S = /0 is a k-ideal if and only if
S−1p is a k-ideal.

Proof. To begin with, we verify that both Φ and Ψ are well-defined. Let p be a prime ideal of R
such that p∩S = /0. Then S−1p= {a

s |a ∈ p,s ∈ S} by Lemma 2.7.2. Consider a
s ,

b
t ∈ S−1R such

that a
s · b

t = ab
st ∈ S−1p, i.e. ab ∈ p. Then a ∈ p or b ∈ p and thus a

s ∈ S−1p or b
t ∈ S−1p. This

shows that S−1p is a prime ideal of S−1R and that Φ is well-defined.
Let q be a prime ideal of S−1R. By Lemma 2.6.7, ι−1

S (q) is a prime ideal of R. Note that q is
proper and does not contain any element of the form s

t with s, t ∈ S since t
s · s

t = 1. Thus ι−1
S (q)

intersects S trivially. This shows that Ψ is well-defined.
We continue with the proof that Ψ◦Φ is the identity, i.e. ι−1

S (S−1p) = p for every prime ideal
p of R that does not intersect S. The inclusion p⊂ ι−1

S (S−1p) is trivial. The reverse inclusion can
be shown as follows. The set ι−1

S (S−1p) consists of all elements a ∈ R such that a
1 = b

s for some
b ∈ p and s ∈ S. This equation says that there is a t ∈ S such that tsa = tb. Since b ∈ p, we have
tsa = tb ∈ p. Since ts /∈ p, we have a ∈ p, as desired.

We continue with the proof that Φ◦Ψ is the identity, i.e. S−1ι−1
S (q) = q for every prime ideal

q of S−1R. The inclusion S−1ι−1
S (q)⊂ q is trivial. The reverse inclusion can be shown as follows.

Let a
s ∈ q. Then a

1 = s
1 · a

s ∈ q and a ∈ ι−1
S q. Thus a

s ∈ S−1ι−1
S (q), as desired. This concludes the

proof of the first claim of the proposition.
We continue with the proof that a prime ideal p of R with p∩S = /0 is a k-ideal if and only

if S−1p is a k-ideal. First assume that S−1p is a k-ideal and consider an equality a+ c = b with
a,b ∈ p. Then we have a

1 +
c
1 = b

1 with a
1 ,

b
1 ∈ S−1p. Since S−1p is a k-ideal, we have c

1 ∈ S−1p
and thus c ∈ p. This shows that p is a k-ideal.

Conversely, assume that p is a k-ideal and consider an equality a
s +

c
u = b

t with a
s ,

b
t ∈ S−1p.

This means that wtua+wstc = wsub for some w ∈ S. Since wtua and wsub are elements of the
k-ideal p, also wstc ∈ p. Since p is prime and wst /∈ p, we have c ∈ p and thus c

u ∈ S−1p, as
desired. This finishes the proof of the proposition.

Let R be a semiring, p a prime ideal of R and S = R−p. Then S−1p is the complement of the
units of S−1R and therefore its unique maximal ideal.
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Definition 2.7.6. Let R be a semiring and p a prime ideal of R. The residue field at p is the
semiring k(p) = Rp/c(S−1p) where S is the complement of p in R and c(S−1p) is the congruence
on Rp that is generated by S−1p.

Let p be a prime ideal of a semiring R. Then the residue field at p comes with a canonical
morphism R→ k(p), which is the composition of the localization map R→ Rp with the quotient
map Rp→ k(p). Note that the residue field k(p) can be the trivial semiring in case that p is not a
k-ideal. More precisely, we have the following.

Corollary 2.7.7. Let R be a semiring, p a prime ideal of R and S = R−p. Then the residue field
k(p) is a semifield if p is a k-ideal and trivial if not.

Proof. First assume that p is a prime k-ideal. Then p is the maximal prime ideal that does
not intersect S and thus m= S−1p is the unique maximal of S−1R. By Proposition 2.7.5, m is
a k-ideal. Thus the kernel of S−1R→ k(p) is m, which shows that k(p) is not trivial. Since
(S−1R)× = S−1R−m, we see that (S−1R)× → k(p)−{0} is surjective, which shows that all
nonzero elements of k(p) are invertible, i.e. k(p) is a semifield.

Next assume that p is not a k-ideal. By Proposition 2.7.5, m= S−1p is not a k-ideal, which
means that the kernel of S−1R→ k(p) is strictly larger than m and therefore contains a unit of
S−1R. This shows that k(x) must be trivial.

Corollary 2.7.8. Let R be a nontrivial semiring. Then there exists a morphism R→ k to a
semifield k.

Proof. By Exercise 2.6.10, R has a maximal k-ideal p. By Lemma 2.6.6, p is prime. By
Corollary 2.7.7, k(p) is a semifield, and the canonical morphism R→ k(p) verifies the claim of
the corollary.

Exercise 2.7.9. Let R be a semiring and p a prime k-ideal of R. Show that R/p is nontrivial and
without zero divisors and that k(p) is isomorphic to Frac(R/p). What happens if p is a prime
ideal that is not a k-ideal?
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