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Preface

These lecture notes accompany a course that I am giving in the term March–June 2018 at IMPA.
I intend to add chapters accordingly to the progress of these lectures and to regularly put new
versions of these notes online. To make the changes between the different version more visible,
each version will carry a distinct date on the front page. To make it possible to print these notes
chapter by chapter, chapters will start on odd pages and contain a partial bibliography. To make
changes in older parts of the lectures visible, each chapter carries the date of the last changes on
its initial page.

Aim of these notes

In these notes, we will introduce blueprints and blue schemes and explain how this theory can be
used to endow the tropicalization of a classical variety with a schematic structure.

Once the basic constructions are explained, we discuss balancing conditions and connections
to related theories as skeleta of Berkovich spaces, toroidal embeddings and log-structures. We put
a particular weight on explaining open problems in this very young branch of tropical geometry.

Main references

The main aim of this course is to explain (parts of) the material of the papers [GG14] and [GG16]
by Jeffrey and Noah Giansiracusa, [MR14] and [MR16] by Maclagan and Rincón, and [Lor15]
by the author. There will be plenty of secondary references, which we will cite at the appropriate
places.

A useful alternative source are the lecture notes [YALE17] of lectures at YALE, which were
held by various experts in the area and organized by Mincheva and Payne.

I am grateful for any kind of feedback that helps me to improve these notes!
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Chapter 1

Why tropical scheme theory?

chapter last edited on
March 12, 2018

In this first chapter, we explain the purpose of tropical scheme theory, its main achievements as
of today and some of the central question of this new branch of tropical geometry. At the end of
this chapter, we give a brief outline of the previsioned structure of the rest of these notes.

1.1 Tropical varieties

In brevity, a tropical variety is a balanced polyhedral complex. In this section, we explain this
definition, starting with the case of a tropical curve, which is easier to formulate than its higher
dimensional analogue.

Definition 1.1.1. A tropical curve (in Rn) is an embedded graph Γ in Rn with possibly unbounded
edges together with a weight function

m : EdgeΓ−→ Z>0

such that all edges have rational slopes and such that the following so-called balancing condition
is satisfied for every vertex p of Γ: for every edge e containing p, let ve ∈ Zn be the primitive
vector, which is the smallest nonzero vector pointing from p in the direction of e; then

∑
p∈e

m(e) · ve = 0.

Example 1.1.2. In Figure 1.1, we depict a tropical curve in R2, explaining the balancing
condition at the three vertices of the curve.

The generalization of the involved notions to higher dimensions requires some preparation
and leads us to the following definitions.

Definition 1.1.3. A halfspace in Rn is a subset of Rn of the form

H =
{
(x1, . . . ,xn) ∈ Rn

∣∣a1x1 + · · ·+anxn > b
}

with a1, . . . ,an,b ∈ R. The halfspace H is rational if a1, . . . ,an ∈Q.

Definition 1.1.4. A (rational) polyhedron P (in Rn) is an intersection of finitely many (rational)
halfspaces in Rn. A face of a polyhedron P is a nonempty intersection of P with a halfspace H
such that the boundary of H does not contain interior points of P.
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Figure 1.1: A tropical curve in R2 and the balancing condition

Note that the polyhedron P is a face of itself and that every face of a (rational) polyhedron is
again a (rational) polyhedron.

Definition 1.1.5. A polyhedral complex (in Rn) is a finite collection ∆ of polyhedra in Rn such
that the following two conditions are satisfied:

(1) each face of a polyhedron in ∆ is in ∆;

(2) the intersection of two polyhedra in ∆ is a face of both polyhedra or empty.

Definition 1.1.6. Let ∆ be a polyhedral complex. The support of ∆ is

|∆| =
⋃

P∈∆

P.

The dimension of ∆ is dim∆ = max{dimP |P ∈ ∆}. The polyhedral complex ∆ is equidimen-
sional if

|∆| =
⋃

dimP=dim∆

P

and ∆ is rational if every polyhedron P in ∆ is rational.

Exercise 1.1.7. Let H be a rational subvector space of Rn, i.e. H has a basis in Qn. Show that
the image of Zn ⊂Rn under the quotient map π : Rn→Rn/H is a lattice, i.e. a discrete subgroup
Λ that is isomorphic to Zk where k = n− dimH. The isomorphism Λ ' Zk extends to an
isomorphism Rn/H ' Rk of vector spaces, i.e. we can identify π with a surjection π′ : Rn→ Rk

that maps Zn to Zk. Show that the image π′(P) of a rational polyhedron P in Rn is a rational
polyhedron in Rk.

Let P be a rational polyhedron in Rn and x0 ∈ P. Show that the subvector space H spanned
by {x− x0|x ∈ P} is rational and does not depend on the choice of x0. Choose an isomorphism
Rn/H ' Rk as above. Conclude that the image P of P in Rk is a 0-dimensional rational
polyhedron. More generally, let Q be rational polyhedron that contains P as a face. Show that
the image Q of Q in Rk is a rational polyhedron of dimension dimQ−dimP.

We call the image Q under the quotient map π′ : Rn→ Rk, as considered in Exercise 1.1.7,
the image of Q modulo the affine linear span of P. If Q is a rational polyhedron of dimension
dimQ = dimP+1 that contains P as a face, then the image Q of Q in Rk is a one dimensional
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rational polyhedron that contains P as a boundary point. Thus we can speak of the primitive
vector vQ of Q at P, which is the smallest nonzero vector in Rk with integral coefficients that is
pointing from P in the direction of Q.

Definition 1.1.8. A tropical variety (in Rn) is an equidimensional and rational polyhedral
complex ∆ together with a weight function

m :
{

P ∈ ∆
∣∣dimP = dim∆

}
−→ Z>0

such that for every polyhedron P ∈ ∆ with dimP = dim∆−1, the top dimensional polyhedra in
∆ containing P satisfy the balancing modulo the affine linear span of P, i.e.

∑
P(Q

m(Q)vQ = 0

where P and Q are the images of P and Q modulo the affine linear span of P and where vQ is the
primitive vector of Q at P.

1.2 Tropicalization of classical varieties

Let k be a field.

Definition 1.2.1. A nonarchimedean absolute value of k is a function v : k→ R>0 such that for
all a,b ∈ k,

(1) v(0) = 0 and v(1) = 1;

(2) v(ab) = v(a)v(b);

(3) v(a+b)6 max{v(a),v(b)}.

An nonarchimedean absolute value is trivial if v(a) = 1 for all a ∈ k×. Otherwise it is called
nontrivial. An nonarchimedean absolute value is discrete if v(k×) is a discrete subset of R>0.

A nonarchimedean field is an algebraically closed field k together with a nontrivial nonar-
chimedean absolute value v.

Exercise 1.2.2. Let v be a nonarchimedean absolute value on a field k. Show the following
assertions.

(1) If v is trivial, then v is discrete. If k is algebraically closed and v is discrete, then v is trivial.
Give an example of a discrete absolute value that is not trivial. If v is not discrete, then its
image in R>0 is dense.

(2) We have v(k×) ⊂ R>0 and v(−1) = 1. If v(a) 6= v(b), then v(a+b) = max{v(a),v(b)}.
Conclude that if ∑

n
i=1 ai = 0 in k, then at least two terms v(ak) and v(al) with k 6= l assume

the maximum max{v(ai)}.

For the rest of this chapter, we fix a nonarchimedean field (k,v). Let X ⊂ (k×)n be an
algebraic variety, i.e. the zero set of Laurent polynomials f1, . . . , fr ∈ k[T±1

1 , . . . ,T±1
n ].

Definition 1.2.3. The tropicalization of X is defined as the topological closure X trop = trop(X)
of the image of X under the map

trop : (k×)n Rn
>0 Rn.

(v,...,v) (log,...,log)
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Example 1.2.4. In Figure 1.2, we illustrate the tropicalization of a genus 1 curve E, embedded
sufficiently general in (k×)2. More precisely, we illustrate the tropicalization of the compactifi-
cation E of E, which embeds into the projective plane P2. This means that all unbounded edges
of the tropicalization of E gain a second boundary point, which we illustrate by bullets in Figure
1.2. Note that this picture suggests that tropicalizations preserve certain geometric invariants like
the genus.

−2 0 2 −2
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4

−2

0

2 tropicalization

Figure 1.2: Tropicalization of an elliptic curve, including its points at infinity

Theorem 1.2.5 (Structure theorem for tropicalizations). Let (k,v) be a nonarchimedean field
and X ⊂ (k×)n an equidimensional algebraic variety. Then

(1) X trop = |∆| for a rational and equidimensional polyhedral complex ∆;

(2) X ⊂ (k×)n determines a weight function

m :
{

P ∈ ∆
∣∣dimP = dim∆

}
−→ Z>0

such that (∆,m) is a tropical variety.

The first part of the structure theorem has been proven by Bieri and Groves in their 1984
paper [BG84], which precedes tropical geometry by around 15 years and uses a slightly different
setup than we do in our statement. The second part has been proven by Speyer in his thesis
[Spe05]. A formulation of the structure theorem that is very close to ours appears in Maclagan
and Sturmfels’ book [MS15] as Theorem 3.3.6.

1.3 Two problems with the concept of a tropical variety

There are two oddities with the concept of a tropical variety that create difficulties for the devel-
opment of algebro-geometric tools for tropical geometry and their application to tropicalizations
of classical varieties.

The first problem is that the polyhedral complex ∆ with |∆|= X trop is not determined by the
classical variety X ⊂ (k×)n. In other words,

the tropicalization of a classical variety is not a tropical variety.

The second problem relates to the functions of a tropical variety. The explanation of this
issue requires some preliminary definitions.
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Definition 1.3.1. The tropical semifield is the set T= R>0 together with the addition

a+b = max{a,b}

and the usual multiplication
a ·b = ab

of nonnegative real numbers a,b.

Together with these operations T is indeed a semifield, i.e. it satisfies all of the axioms
of a field except for the existence of additive inverses. The tropical semifield allows for the
following reformulation of Definition 1.2.1: a nonarchimedean absolute value is a multiplicative
map v : k→ T that is subadditive, i.e. v(a+b)6 v(a)+ v(b) where the latter sum is taken with
respect to the addition in T.

Remark 1.3.2. In these lecture notes, we adopt the “max-times”-convention for the tropical
numbers, which is less common than the “max-plus” or the “min-plus”-convention. To explain,
the map log :T→ Rdefines an isomorphism of semirings between the tropical semifield T and the
max-plus-algebra R=(R∪{−∞},max,+). Multiplication of with (−1) defines an isomorphism
R→ R between the max-plus-algebra with the min-plus-algebra R= (R∪{∞},min,+).

A priori, it is a matter of choice, with which semifield one works. But depending on the
situation, some choices are more natural than others. When considering tropical varieties as
polyhedral complexes, then the piecewise linear structure of the tropical variety is only visible in
the logarithmic picture, i.e. one is led to work with the max-plus or the min-plus-algebra.

When working with tropical polynomials and tropical functions, in particular when compared
to classical polynomials and functions, then it is more natural and less confusing to work with
the max-times-convention.

Definition 1.3.3. The tropical polynomial algebra in T1, . . . ,Tn is the set

T[T1, . . . ,Tn] =
{

∑
J=(e1,...,en)

aJT e1
1 · · ·T en

n

∣∣aJ ∈ T and aJ = 0 for almost all J
}
,

which is a semiring with respect to the usual addition and multiplication rules for polynomials
where we apply the tropical addition aI +aJ = max{ai,aJ} to add coefficients.

A tropical polynomial f = ∑aJT e1
1 · · ·T en

n defines the function

f (−) : Tn −→ T.
x = (x1, . . . ,xn) 7−→ f (x) = max

{
aJxe1

1 · · ·xen
n
}

We are prepared to explain the second problem with tropical varieties. Namely, different
polynomials can define the same function, as demonstrated in the following example.

Example 1.3.4. Consider f1 = T 2 +1 and f2 = T 2 +T +1. Then

f1(x) = x2 +1 = max{x2,1}= max{x2,x,1}= f2(x)

for all x ∈ T.

In other words,

tropical functions are not the same as tropical polynomials.
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To understand why tropical scheme theory promises to resolve these digressions, let us have
a look at classical algebraic geometry.

For varieties over an algebraically closed field, Hilbert’s Nullstellensatz guarantees that
functions are the same as polynomials. However, if one tries to generalize the concept of a
variety to arbitrary field or even rings, one faces the same problem: different polynomials can
define the same function.

Grothendieck surpassed this problem with the invention of schemes. Since the functions of a
tropical variety do not form a ring, but merely a semiring, it is clear that Grothendieck’s concept
of a scheme does not find applications in tropical geometry.

However, F1-geometry has provided a theory of so-called semiring schemes, cf. the papers
[Dur07] of Durov, [TV09] of Toën-Vaquié and [Lor12] of the author. This theory and its
refinement in terms of blueprints provides an appropriate framework for tropical scheme theory.

1.4 Semiring schemes

In this section, we give an idea of the definition of a semiring scheme. Similar to a scheme, it is
built from the spectra of semirings. In order to understand this relation between tropical varieties
and semiring schemes that we have in mind, we explain this concept in analogy to classical
varieties and schemes, concentrating on the affine situation. More details about the construction
of semiring schemes will be explained in later parts of these notes.

Let k be an algebraically closed field and X ⊂ kn a variety, i.e. the zero set of polynomials
f1, . . . , fr ∈ k[T1, . . . ,Tn]. Let

I =
{

f ∈ k[T1, . . . ,Tn]
∣∣ f (x1, . . . ,xn) = 0 for all (x1, . . . ,xn) ∈ X

}
.

be its ideal of definition and A = k[T1, . . . ,Tn]/I its ring of regular functions.
The associated scheme is the spectrum of A, which is the set SpecA of all prime ideals of A

together with the topology generated by the principal open subsets

Uh = {p⊂ A |h /∈ p}

for h ∈ A and with the structure sheaf

O : {open subsets of SpecA} −→ Rings.
Uh 7−→ A[h−1]

We can recover the variety X from SpecA as follows. The ring of regular functions A =
k[T1, . . . ,Tn]/I equals the ring of global sections

O(SpecA) = A[1−1] = A.

The variety X is equal to the set of k-rational points of SpecA, i.e. we have a canonical bijection

X −→ Homk(A,k) = Homk(Speck,SpecA)

that sends a point x = (x1, . . . ,xn) of X to the evaluation map

evx : h 7→ h(x).

Its inverse sends a homomorphism f : A→ k to the point
(

f (T1), . . . , f (Tn)
)

of X .
The definition of SpecA extends to any semiring A as follows. There are natural extensions

of the notions of prime ideals and localizations from rings to semirings.
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Definition 1.4.1. The spectrum of A is the set SpecA of all prime ideals of A together with the
topology generated by the principal open subsets

Uh = {p⊂ A |h /∈ p}

for h ∈ A and with the structure sheaf

O : {open subsets of SpecA} −→ Semirings
Uh 7−→ A[h−1]

A semiring scheme is a topological space together with a sheaf in the category of semiring
that is locally isomorphic to the spectra of semirings. A detailed definition of all this terminology
will be given in later chapters.

1.5 Scheme theoretic tropicalization

In this section, we give an outline of the Giansiracusa tropicalization, which associates with
a classical variety a semiring scheme whose T-rational points correspond to the set theoretic
tropicalization as considered in section 1.2. For the sake of simplicity, we explain this for
subvarieties of affine space opposed to suvarieties of a torus, which is the context of section 1.2.

We require some notation. For a multi-index J = (e1, . . . ,en), we write T J = T e1
1 · · ·T en

n and
xJ = xe1

1 · · ·xen
n . Let f = ∑aJT J ∈ k[T1, . . . ,Tn]. We define

f trop = ∑v(aJ)T J ∈ T[T1, . . . ,Tn].

Let X ⊂ kn a variety with ideal of definition I.

Definition 1.5.1. The Giansiracusa tropicalization of X is the semiring scheme

Tropv(X) = Spec
(
T[T1, . . . ,Tn]/ bendv(I)

)
where the bend relations bendv(I) are defined as

bendv(I) =
(

f trop ∼ f trop + v(bJ)T J
∣∣∣ f +bJT J ∈ I

)
.

The main result of Jeffrey and Noah Giansiracusa in [GG16] is the following connection to
the set theoretic tropicalization X trop of X , which stays in analogy to the corresponding result for
schemes and varieties over an algebraically closed field.

Theorem 1.5.2 (Jeffrey and Noah Giansiracusa ’13). We can recover the tropical variety X trop

as a set via a natural bijection

X trop ∼−→ HomT(SpecT,Tropv(X)).

Moreover, in case of a projective variety X , the Giansiracusa brothers associate with Tropv(X)
a Hilbert polynomial and show that it coincides with the Hilbert polynomial of X . This might be
seen as the first striking result of tropical scheme theory.

Diane Maclagan and Felipe Rincón have shown in [MR14] that the embedding of Tropv(X)
into the n-dimensional tropical torus remembers the weights of the tropical variety X trop, pro-
vided one has chosen the structure of a polyhedral complex. To wit, the embedding of a
variety X into (k×)n yields an embedding of Tropv(X) into the n-dimensional tropical torus
SpecT[T±1

1 , . . . ,T±1
n ].
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Theorem 1.5.3 (Maclagan-Rincón ’14). Assume that X ⊂ (k×)n is equidimensional. Then the
weight function m of any realization of X trop as a tropical variety (∆,m) is determined by the
embedding of Tropv(X) into SpecT[T±1

1 , . . . ,T±1
n ].

In the author’s paper [Lor15], the above results are refined and generalized by using blueprints
and blue schemes. We mention two applications of this refined approach: the Giansiracusa
tropicalization can be applied to more general situations than tropicalizations of subvarieties of
toric varieties; for instance, it is possible to endow skeleta of Berkovich spaces with a schematic
structure under certain additional hypotheses. Another feature is that the weight function of the
tropical variety is already encoded into the structure sheaf of the “blue tropical scheme”, which
opens the possibility for a theory of abstract tropical schemes, opposed to embedded tropical
schemes.

1.6 A central problem in tropical scheme theory

The aforementioned results give hope that the replacement of tropical varieties by tropical
schemes will allow for new tools in tropical geometry, such as sheaf cohomology or a cohomo-
logical interpretation of intersection theory. However, it is not at all clear what a good notion of
a “tropical scheme” might be.

The theory of semiring schemes comes with the notion of a T-scheme, which is a morphism
X → SpecT of semiring schemes. However, there are too many T-schemes to make this a useful
class. For example, every hyperplane in Rn can be realized as a T-scheme, and such subsets of
Rn cannot satisfy the balancing condition with respect to any polyhedral subdivision and any
choice of weight function. Even worse, every intersection of hyperplanes can be realized as
T-schemes, and such intersections include all bounded convex subsets of Rn, e.g. the unit ball.

This makes clear that we have to restrict our attention to a subclass of T-schemes in order
to obtain a useful class that could replace the class of tropical varieties. Maclagan and Rincon
make a suggestion for such a class, which is based on the observation that the ideal of definition
of the tropicalization of a classical variety is a valuated matroid. In [MR14] and [MR16], they
investigate the class of T-schemes whose ideal of definition is a valuated matroid and show
certain desirable properties like chain conditions for “tropical ideals” and the preservation of
Hilbert functions.

Unfortunately, this theory encounters some serious difficulties since the class of tropical
ideals is, a priori, too restrictive. For instance, the ideals of definition of some prominent spaces
in tropical geometry, like linear tropical spaces and Grassmannians, are not tropical ideals.
Moreover both the intersection and the sum of two tropical ideals fail to be a tropical ideal
in general, which provides obstacles for primary decompositions and intersection theory of
schemes, respectively.

It might be the case that there is natural way to associate a “generically generated” tropical
ideal with ideals occuring in the situations explained above, but this seems to be a difficult
problem. It might be the case that the class of tropical ideals, as considered in [MR14], is too
restrictive for a useful theory of “tropical schemes”.

In so far, we formulate the central problem of tropical scheme theory in the following way.
We would like to find a class C of T-schemes that satisfies the following criteria:

• C contains the tropicalizations of all classical varieties and for every tropical variety, C
contains a T-scheme representing it;
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• C contains “universally constructable T-schemes” such as tropical linear spaces and
tropical Grassmannians;

• the T-rational points of every T-scheme in C yields a tropical variety; in particular, this
involves a theory of balancing conditions for T-schemes;

• defining ideals of schemes in C are closed under intersections and sums;

• C allows for a dimension theory by considering chains of irreducible reduced T-schemes
in C; in particular, this involves the notion of an irreducible T-scheme.

A more comprehensive list of open problems in tropical scheme theory was compiled at a
workshop in April 2017 at the American Institute of Mathematics, see [AIM17] for a link to the
problem list.

1.7 Outline of the previsioned contents of these notes

The central goal of these notes is to explain the material of the previous sections in detail. This
includes reviewing some parts of “classical” tropical geometry and introducing semiring schemes,
monoid schemes and blue schemes. We intend to discuss the Giansiracusa tropicalization and
subsequent results from the papers [GG14] and [GG16] by Jeffrey and Noah Giansiracusa,
[MR14] and [MR16] by Maclagan and Rincón, and [Lor15] by the author.

If we achieve this central goal in time, then we intend to treat more advanced topics like
scheme theoretic skeleta of Berkovich spaces, schemes over the tropical hyperfield or families of
matroids.

The chapters of these notes will be grouped into parts. The first part reviews the algebraic
foundations, which are (ordered) semirings, monoids, blueprints, localizations, ideals and
congruences. The second part is dedicated to generalized scheme theory and contains the
constructions of semiring schemes, monoid schemes and blue schemes. The third part enters the
central the theme of these notes, which is scheme theoretic tropicalization.
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